{"title":"基于幂律模型的聚合物水基泥浆环空压力损失预测","authors":"G. Kheir, Ahmed el Gibaly, M. Farahat","doi":"10.21608/JPME.2018.38799","DOIUrl":null,"url":null,"abstract":"Bottomhole Pressure (BHP) determination is quite crucial in the success of the drilling operations, especially on tight-drilling window environment. The calculation becomes much more critical when drilling with near-balance bottomhole pressure on the unconventional drilling techniques like Managed Pressure Drilling (MPD). Although Pressure-While-Drilling (PWD) technology can provide measured values of Bottomhole Pressure, it is so expensive and needs circulation to convey readings. Also, in case of tool failure, it consumes a lot of time to trip out of hole in order to change the tool, especially on deep-well drilling. On this paper, Bingham, Power-Law, Herschel-Bulkley and API RP13D rheological models have been utilized to calculate the Annular Pressure Loss (APL) on a deep well with polymer Water-Base Mud (WBM). A comparative study between model-calculated and PWD-measured values of APL for 15 points along the wellbore was conducted on the calculation of Annular Pressure Loss. Power-Law model was found the most optimum rheological model for polymer Water-Base Mud, due to exhibiting no Yield Stress. Power-law model gave 35 psi average error which can be tolerated most of the time during drilling operations.","PeriodicalId":34437,"journal":{"name":"Journal of Petroleum and Mining Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Annular Pressure Losses Prediction Using Power-Law Model with Polymer Water-Base Mud\",\"authors\":\"G. Kheir, Ahmed el Gibaly, M. Farahat\",\"doi\":\"10.21608/JPME.2018.38799\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bottomhole Pressure (BHP) determination is quite crucial in the success of the drilling operations, especially on tight-drilling window environment. The calculation becomes much more critical when drilling with near-balance bottomhole pressure on the unconventional drilling techniques like Managed Pressure Drilling (MPD). Although Pressure-While-Drilling (PWD) technology can provide measured values of Bottomhole Pressure, it is so expensive and needs circulation to convey readings. Also, in case of tool failure, it consumes a lot of time to trip out of hole in order to change the tool, especially on deep-well drilling. On this paper, Bingham, Power-Law, Herschel-Bulkley and API RP13D rheological models have been utilized to calculate the Annular Pressure Loss (APL) on a deep well with polymer Water-Base Mud (WBM). A comparative study between model-calculated and PWD-measured values of APL for 15 points along the wellbore was conducted on the calculation of Annular Pressure Loss. Power-Law model was found the most optimum rheological model for polymer Water-Base Mud, due to exhibiting no Yield Stress. Power-law model gave 35 psi average error which can be tolerated most of the time during drilling operations.\",\"PeriodicalId\":34437,\"journal\":{\"name\":\"Journal of Petroleum and Mining Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Petroleum and Mining Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21608/JPME.2018.38799\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Petroleum and Mining Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21608/JPME.2018.38799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Annular Pressure Losses Prediction Using Power-Law Model with Polymer Water-Base Mud
Bottomhole Pressure (BHP) determination is quite crucial in the success of the drilling operations, especially on tight-drilling window environment. The calculation becomes much more critical when drilling with near-balance bottomhole pressure on the unconventional drilling techniques like Managed Pressure Drilling (MPD). Although Pressure-While-Drilling (PWD) technology can provide measured values of Bottomhole Pressure, it is so expensive and needs circulation to convey readings. Also, in case of tool failure, it consumes a lot of time to trip out of hole in order to change the tool, especially on deep-well drilling. On this paper, Bingham, Power-Law, Herschel-Bulkley and API RP13D rheological models have been utilized to calculate the Annular Pressure Loss (APL) on a deep well with polymer Water-Base Mud (WBM). A comparative study between model-calculated and PWD-measured values of APL for 15 points along the wellbore was conducted on the calculation of Annular Pressure Loss. Power-Law model was found the most optimum rheological model for polymer Water-Base Mud, due to exhibiting no Yield Stress. Power-law model gave 35 psi average error which can be tolerated most of the time during drilling operations.