亏缺和部分根区干灌条件下番茄产量、生理反应及水氮利用效率

IF 1.2 4区 生物学 Q2 Agricultural and Biological Sciences
M. A. Badr, W. El-Tohamy, S. Abou-hussein, N. Gruda
{"title":"亏缺和部分根区干灌条件下番茄产量、生理反应及水氮利用效率","authors":"M. A. Badr, W. El-Tohamy, S. Abou-hussein, N. Gruda","doi":"10.5073/JABFQ.2018.091.042","DOIUrl":null,"url":null,"abstract":"Water scarcity in arid regions is a serious problem, which calls for innovative irrigation water management. Partial root zone drying (PRD) technique can considerably reduce irrigation amount for crops. To investigate this further, tomato plants were imposed to either surface drip (SUR) with full irrigation (FI) at 100% of evaporative demands and regulate deficit irrigation (RDI) at 50% water of FI or subsurface drip irrigation (SDI) with fixed PRD at 75 (PRD75) and 50% (PRD50) of the FI. Surface evaporation under SUR with FI constitutes a large fraction of water losses from cropped fields while SDI with PRD75 preserved more water for plant uptake. Plants grown under water saving treatments showed lower stomatal conductance and transpiration rates compared to FI plants. Tomato yield under SDI with PRD75 was comparable to yield under SUR with FI for both tested seasons along with 25% water saving and 30% increase in water use efficiency (WUE). Otherwise, PRD50 reduced yield by 18-20%, but a substantial amount of irrigation water was saved along a 60 and 65% higher WUE compared to FI treatment. Fruit dry weight and harvest index (HI) were significantly higher with PRD75 compared to the other treatments. Seasonal N uptake and in turn N recovery was higher in PRD75 than any other treatment associated with improving N use efficiency.","PeriodicalId":56276,"journal":{"name":"Journal of Applied Botany and Food Quality-Angewandte Botanik","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2018-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Tomato yield, physiological response, water and nitrogen use efficiency under deficit and partial root zone drying irrigation in an arid region\",\"authors\":\"M. A. Badr, W. El-Tohamy, S. Abou-hussein, N. Gruda\",\"doi\":\"10.5073/JABFQ.2018.091.042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Water scarcity in arid regions is a serious problem, which calls for innovative irrigation water management. Partial root zone drying (PRD) technique can considerably reduce irrigation amount for crops. To investigate this further, tomato plants were imposed to either surface drip (SUR) with full irrigation (FI) at 100% of evaporative demands and regulate deficit irrigation (RDI) at 50% water of FI or subsurface drip irrigation (SDI) with fixed PRD at 75 (PRD75) and 50% (PRD50) of the FI. Surface evaporation under SUR with FI constitutes a large fraction of water losses from cropped fields while SDI with PRD75 preserved more water for plant uptake. Plants grown under water saving treatments showed lower stomatal conductance and transpiration rates compared to FI plants. Tomato yield under SDI with PRD75 was comparable to yield under SUR with FI for both tested seasons along with 25% water saving and 30% increase in water use efficiency (WUE). Otherwise, PRD50 reduced yield by 18-20%, but a substantial amount of irrigation water was saved along a 60 and 65% higher WUE compared to FI treatment. Fruit dry weight and harvest index (HI) were significantly higher with PRD75 compared to the other treatments. Seasonal N uptake and in turn N recovery was higher in PRD75 than any other treatment associated with improving N use efficiency.\",\"PeriodicalId\":56276,\"journal\":{\"name\":\"Journal of Applied Botany and Food Quality-Angewandte Botanik\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2018-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Botany and Food Quality-Angewandte Botanik\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.5073/JABFQ.2018.091.042\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Botany and Food Quality-Angewandte Botanik","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.5073/JABFQ.2018.091.042","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 14

摘要

干旱地区缺水是一个严重的问题,需要创新灌溉用水管理。部分根区干燥(PRD)技术可以显著减少作物的灌溉量。为了进一步研究这一点,番茄植株要么在蒸发需求的100%下进行全灌溉(FI)的表面滴灌(SUR),并在FI的50%水下调节亏缺灌溉(RDI),要么在FI的75%(PRD75)和50%(PRD50)下进行固定PRD的地下滴灌(SDI)。SUR和FI下的地表蒸发构成了农田水分损失的很大一部分,而SDI和PRD75为植物吸收保留了更多的水分。与FI植物相比,在节水处理下生长的植物表现出较低的气孔导度和蒸腾速率。在两个试验季节,SDI和PRD75的番茄产量与SUR和FI的产量相当,节水25%,水分利用效率提高30%。除此之外,PRD50降低了18-20%的产量,但与FI处理相比,WUE提高了60%和65%,节省了大量的灌溉用水。与其他处理相比,PRD75处理的果实干重和收获指数(HI)显著较高。PRD75的季节性氮吸收和氮回收率高于与提高氮利用效率相关的任何其他处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tomato yield, physiological response, water and nitrogen use efficiency under deficit and partial root zone drying irrigation in an arid region
Water scarcity in arid regions is a serious problem, which calls for innovative irrigation water management. Partial root zone drying (PRD) technique can considerably reduce irrigation amount for crops. To investigate this further, tomato plants were imposed to either surface drip (SUR) with full irrigation (FI) at 100% of evaporative demands and regulate deficit irrigation (RDI) at 50% water of FI or subsurface drip irrigation (SDI) with fixed PRD at 75 (PRD75) and 50% (PRD50) of the FI. Surface evaporation under SUR with FI constitutes a large fraction of water losses from cropped fields while SDI with PRD75 preserved more water for plant uptake. Plants grown under water saving treatments showed lower stomatal conductance and transpiration rates compared to FI plants. Tomato yield under SDI with PRD75 was comparable to yield under SUR with FI for both tested seasons along with 25% water saving and 30% increase in water use efficiency (WUE). Otherwise, PRD50 reduced yield by 18-20%, but a substantial amount of irrigation water was saved along a 60 and 65% higher WUE compared to FI treatment. Fruit dry weight and harvest index (HI) were significantly higher with PRD75 compared to the other treatments. Seasonal N uptake and in turn N recovery was higher in PRD75 than any other treatment associated with improving N use efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
0.00%
发文量
0
审稿时长
20 weeks
期刊介绍: The Journal of Applied Botany and Food Quality is the Open Access journal of the German Society for Quality Research on Plant Foods and the Section Applied Botany of the German Botanical Society. It provides a platform for scientists to disseminate recent results of applied plant research in plant physiology and plant ecology, plant biotechnology, plant breeding and cultivation, phytomedicine, plant nutrition, plant stress and resistance, plant microbiology, plant analysis (including -omics techniques), and plant food chemistry. The articles have a clear focus on botanical and plant quality aspects and contain new and innovative information based on state-of-the-art methodologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信