M. A. Badr, W. El-Tohamy, S. Abou-hussein, N. Gruda
{"title":"亏缺和部分根区干灌条件下番茄产量、生理反应及水氮利用效率","authors":"M. A. Badr, W. El-Tohamy, S. Abou-hussein, N. Gruda","doi":"10.5073/JABFQ.2018.091.042","DOIUrl":null,"url":null,"abstract":"Water scarcity in arid regions is a serious problem, which calls for innovative irrigation water management. Partial root zone drying (PRD) technique can considerably reduce irrigation amount for crops. To investigate this further, tomato plants were imposed to either surface drip (SUR) with full irrigation (FI) at 100% of evaporative demands and regulate deficit irrigation (RDI) at 50% water of FI or subsurface drip irrigation (SDI) with fixed PRD at 75 (PRD75) and 50% (PRD50) of the FI. Surface evaporation under SUR with FI constitutes a large fraction of water losses from cropped fields while SDI with PRD75 preserved more water for plant uptake. Plants grown under water saving treatments showed lower stomatal conductance and transpiration rates compared to FI plants. Tomato yield under SDI with PRD75 was comparable to yield under SUR with FI for both tested seasons along with 25% water saving and 30% increase in water use efficiency (WUE). Otherwise, PRD50 reduced yield by 18-20%, but a substantial amount of irrigation water was saved along a 60 and 65% higher WUE compared to FI treatment. Fruit dry weight and harvest index (HI) were significantly higher with PRD75 compared to the other treatments. Seasonal N uptake and in turn N recovery was higher in PRD75 than any other treatment associated with improving N use efficiency.","PeriodicalId":56276,"journal":{"name":"Journal of Applied Botany and Food Quality-Angewandte Botanik","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2018-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Tomato yield, physiological response, water and nitrogen use efficiency under deficit and partial root zone drying irrigation in an arid region\",\"authors\":\"M. A. Badr, W. El-Tohamy, S. Abou-hussein, N. Gruda\",\"doi\":\"10.5073/JABFQ.2018.091.042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Water scarcity in arid regions is a serious problem, which calls for innovative irrigation water management. Partial root zone drying (PRD) technique can considerably reduce irrigation amount for crops. To investigate this further, tomato plants were imposed to either surface drip (SUR) with full irrigation (FI) at 100% of evaporative demands and regulate deficit irrigation (RDI) at 50% water of FI or subsurface drip irrigation (SDI) with fixed PRD at 75 (PRD75) and 50% (PRD50) of the FI. Surface evaporation under SUR with FI constitutes a large fraction of water losses from cropped fields while SDI with PRD75 preserved more water for plant uptake. Plants grown under water saving treatments showed lower stomatal conductance and transpiration rates compared to FI plants. Tomato yield under SDI with PRD75 was comparable to yield under SUR with FI for both tested seasons along with 25% water saving and 30% increase in water use efficiency (WUE). Otherwise, PRD50 reduced yield by 18-20%, but a substantial amount of irrigation water was saved along a 60 and 65% higher WUE compared to FI treatment. Fruit dry weight and harvest index (HI) were significantly higher with PRD75 compared to the other treatments. Seasonal N uptake and in turn N recovery was higher in PRD75 than any other treatment associated with improving N use efficiency.\",\"PeriodicalId\":56276,\"journal\":{\"name\":\"Journal of Applied Botany and Food Quality-Angewandte Botanik\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2018-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Botany and Food Quality-Angewandte Botanik\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.5073/JABFQ.2018.091.042\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Botany and Food Quality-Angewandte Botanik","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.5073/JABFQ.2018.091.042","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Tomato yield, physiological response, water and nitrogen use efficiency under deficit and partial root zone drying irrigation in an arid region
Water scarcity in arid regions is a serious problem, which calls for innovative irrigation water management. Partial root zone drying (PRD) technique can considerably reduce irrigation amount for crops. To investigate this further, tomato plants were imposed to either surface drip (SUR) with full irrigation (FI) at 100% of evaporative demands and regulate deficit irrigation (RDI) at 50% water of FI or subsurface drip irrigation (SDI) with fixed PRD at 75 (PRD75) and 50% (PRD50) of the FI. Surface evaporation under SUR with FI constitutes a large fraction of water losses from cropped fields while SDI with PRD75 preserved more water for plant uptake. Plants grown under water saving treatments showed lower stomatal conductance and transpiration rates compared to FI plants. Tomato yield under SDI with PRD75 was comparable to yield under SUR with FI for both tested seasons along with 25% water saving and 30% increase in water use efficiency (WUE). Otherwise, PRD50 reduced yield by 18-20%, but a substantial amount of irrigation water was saved along a 60 and 65% higher WUE compared to FI treatment. Fruit dry weight and harvest index (HI) were significantly higher with PRD75 compared to the other treatments. Seasonal N uptake and in turn N recovery was higher in PRD75 than any other treatment associated with improving N use efficiency.
期刊介绍:
The Journal of Applied Botany and Food Quality is the Open Access journal of the German Society for Quality Research on Plant Foods and the Section Applied Botany of the German Botanical Society. It provides a platform for scientists to disseminate recent results of applied plant research in plant physiology and plant ecology, plant biotechnology, plant breeding and cultivation, phytomedicine, plant nutrition, plant stress and resistance, plant microbiology, plant analysis (including -omics techniques), and plant food chemistry. The articles have a clear focus on botanical and plant quality aspects and contain new and innovative information based on state-of-the-art methodologies.