Prudence Mpundu, A. Mbewe, J. Muma, Gift Mwinga Sitali, C. Mubita, Musso Munyeme
{"title":"商业和非商业加工系统肉鸡胴体细菌交叉污染的比较及其公共卫生影响","authors":"Prudence Mpundu, A. Mbewe, J. Muma, Gift Mwinga Sitali, C. Mubita, Musso Munyeme","doi":"10.4236/OJVM.2021.111001","DOIUrl":null,"url":null,"abstract":"Objectives: This study aimed to conduct a comparative assessment of bacterial cross-contamination in commercial and non-commercial processing plants including associated risk factors for bacterial contamination. Study Design: This was analytic cross sectional survey on bacterial contamination of broiler carcasses between different processing systems. Introduction: Zambia, like most African and Asian Countries, still practices “live-open non-commercial broiler carcass processing systems” besides the “closed abattoir based systems”. However, shelf life, spoilage and hygiene levels have been postulated to vary based on the type of processing system. Live-open non-commercial processing systems are popular among majority consumers owing to their perceived “freshness”, compared to commercially dressed chickens. In between, consumers have to balance freshness and quality assurance. Ultimately, this becomes inert, remotely but an important public health issue. However, lack of empirical evidence on safety levels to guide consumer product selection leaves them to speculation. It is this need to close this gap that created an impetus for us to undertake this study. Methods: Biological samples were collected before carcass wash and after carcass wash alongside a structured questionnaire that gathered risk-associated data. Standard microbiological enumeration methods were used to isolate bacteria and enumerate contamination. Results: Broiler carcasses processed from “open” non-commercial systems were more contaminated (45.6%) than “closed-abattoir” commercially processed systems (35%). Escherichia coli were major contaminants (71.3%) and few Salmonella spices (typhi or para-typhi) in 1.3%. Risk analysis indicates washing (method) of carcasses at commercial systems was significantly more risky for contamination than non-commercial ones. Major sources of contamination were “distance from water sources”. Increased volume of slaughters per day (>15,000 birds) for commercial systems accounted for increased cross-contamination, particularly, distance from water source was a ma-jor risk factor for contamination.","PeriodicalId":61886,"journal":{"name":"兽医学(英文)","volume":"11 1","pages":"1-13"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Comparison of Bacterial Cross-Contamination among Broiler Carcasses between Commercial and Non-Commercial Processed System and Its Public Health Implications\",\"authors\":\"Prudence Mpundu, A. Mbewe, J. Muma, Gift Mwinga Sitali, C. Mubita, Musso Munyeme\",\"doi\":\"10.4236/OJVM.2021.111001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objectives: This study aimed to conduct a comparative assessment of bacterial cross-contamination in commercial and non-commercial processing plants including associated risk factors for bacterial contamination. Study Design: This was analytic cross sectional survey on bacterial contamination of broiler carcasses between different processing systems. Introduction: Zambia, like most African and Asian Countries, still practices “live-open non-commercial broiler carcass processing systems” besides the “closed abattoir based systems”. However, shelf life, spoilage and hygiene levels have been postulated to vary based on the type of processing system. Live-open non-commercial processing systems are popular among majority consumers owing to their perceived “freshness”, compared to commercially dressed chickens. In between, consumers have to balance freshness and quality assurance. Ultimately, this becomes inert, remotely but an important public health issue. However, lack of empirical evidence on safety levels to guide consumer product selection leaves them to speculation. It is this need to close this gap that created an impetus for us to undertake this study. Methods: Biological samples were collected before carcass wash and after carcass wash alongside a structured questionnaire that gathered risk-associated data. Standard microbiological enumeration methods were used to isolate bacteria and enumerate contamination. Results: Broiler carcasses processed from “open” non-commercial systems were more contaminated (45.6%) than “closed-abattoir” commercially processed systems (35%). Escherichia coli were major contaminants (71.3%) and few Salmonella spices (typhi or para-typhi) in 1.3%. Risk analysis indicates washing (method) of carcasses at commercial systems was significantly more risky for contamination than non-commercial ones. Major sources of contamination were “distance from water sources”. Increased volume of slaughters per day (>15,000 birds) for commercial systems accounted for increased cross-contamination, particularly, distance from water source was a ma-jor risk factor for contamination.\",\"PeriodicalId\":61886,\"journal\":{\"name\":\"兽医学(英文)\",\"volume\":\"11 1\",\"pages\":\"1-13\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"兽医学(英文)\",\"FirstCategoryId\":\"1091\",\"ListUrlMain\":\"https://doi.org/10.4236/OJVM.2021.111001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"兽医学(英文)","FirstCategoryId":"1091","ListUrlMain":"https://doi.org/10.4236/OJVM.2021.111001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparison of Bacterial Cross-Contamination among Broiler Carcasses between Commercial and Non-Commercial Processed System and Its Public Health Implications
Objectives: This study aimed to conduct a comparative assessment of bacterial cross-contamination in commercial and non-commercial processing plants including associated risk factors for bacterial contamination. Study Design: This was analytic cross sectional survey on bacterial contamination of broiler carcasses between different processing systems. Introduction: Zambia, like most African and Asian Countries, still practices “live-open non-commercial broiler carcass processing systems” besides the “closed abattoir based systems”. However, shelf life, spoilage and hygiene levels have been postulated to vary based on the type of processing system. Live-open non-commercial processing systems are popular among majority consumers owing to their perceived “freshness”, compared to commercially dressed chickens. In between, consumers have to balance freshness and quality assurance. Ultimately, this becomes inert, remotely but an important public health issue. However, lack of empirical evidence on safety levels to guide consumer product selection leaves them to speculation. It is this need to close this gap that created an impetus for us to undertake this study. Methods: Biological samples were collected before carcass wash and after carcass wash alongside a structured questionnaire that gathered risk-associated data. Standard microbiological enumeration methods were used to isolate bacteria and enumerate contamination. Results: Broiler carcasses processed from “open” non-commercial systems were more contaminated (45.6%) than “closed-abattoir” commercially processed systems (35%). Escherichia coli were major contaminants (71.3%) and few Salmonella spices (typhi or para-typhi) in 1.3%. Risk analysis indicates washing (method) of carcasses at commercial systems was significantly more risky for contamination than non-commercial ones. Major sources of contamination were “distance from water sources”. Increased volume of slaughters per day (>15,000 birds) for commercial systems accounted for increased cross-contamination, particularly, distance from water source was a ma-jor risk factor for contamination.