泛曲线重言环中的关系

IF 0.7 4区 数学 Q2 MATHEMATICS
O. Bergvall
{"title":"泛曲线重言环中的关系","authors":"O. Bergvall","doi":"10.4310/cag.2022.v30.n3.a1","DOIUrl":null,"url":null,"abstract":"After some background theory we provide a brief summary of what is known about the tautological ring of the moduli space curves. We then formulate a few conjectures about the structure of the tautological ring of the universal curve. These conjectures are analogous to the so-called \"Faber conjectures\". We verify these conjectures for genus 2 < g < 9. We also study some matrices associated to the conjectures and find a realtionship between these matrices and the corresponding matrices on the moduli space of curves.","PeriodicalId":50662,"journal":{"name":"Communications in Analysis and Geometry","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2020-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Relations in the tautological ring of the universal curve\",\"authors\":\"O. Bergvall\",\"doi\":\"10.4310/cag.2022.v30.n3.a1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"After some background theory we provide a brief summary of what is known about the tautological ring of the moduli space curves. We then formulate a few conjectures about the structure of the tautological ring of the universal curve. These conjectures are analogous to the so-called \\\"Faber conjectures\\\". We verify these conjectures for genus 2 < g < 9. We also study some matrices associated to the conjectures and find a realtionship between these matrices and the corresponding matrices on the moduli space of curves.\",\"PeriodicalId\":50662,\"journal\":{\"name\":\"Communications in Analysis and Geometry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2020-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Analysis and Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/cag.2022.v30.n3.a1\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cag.2022.v30.n3.a1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

在一些背景理论之后,我们简要总结了关于模空间曲线的同义环的已知情况。然后,我们提出了一些关于泛曲线的重言环结构的猜想。这些猜想类似于所谓的“费伯猜想”。我们验证了亏格2本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文 本刊更多论文
Relations in the tautological ring of the universal curve
After some background theory we provide a brief summary of what is known about the tautological ring of the moduli space curves. We then formulate a few conjectures about the structure of the tautological ring of the universal curve. These conjectures are analogous to the so-called "Faber conjectures". We verify these conjectures for genus 2 < g < 9. We also study some matrices associated to the conjectures and find a realtionship between these matrices and the corresponding matrices on the moduli space of curves.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Analysis and Geometry
CiteScore
1.60
自引率
0.00%
发文量
4
审稿时长
>12 weeks
期刊介绍: Publishes high-quality papers on subjects related to classical analysis, partial differential equations, algebraic geometry, differential geometry, and topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
请完成安全验证×
微信好友 朋友圈 QQ好友 复制链接
取消
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信