{"title":"整合蛋白质结构和群体规模的DNA序列数据,用于疾病基因发现和变异解释。","authors":"Bian Li, Bowen Jin, J. Capra, W. Bush","doi":"10.1146/annurev-biodatasci-122220-112147","DOIUrl":null,"url":null,"abstract":"The experimental and computational techniques for capturing information about protein structures and genetic variation within the human genome have advanced dramatically in the past 20 years, generating extensive new data resources. In this review, we discuss these advances, along with new approaches for determining the impact a genetic variant has on protein function. We focus on the potential of new methods that integrate human genetic variation into protein structures to discover relationships to disease, including the discovery of mutational hotspots in cancer-related proteins, the localization of protein-altering variants within protein regions for common complex diseases, and the assessment of variants of unknown significance for Mendelian traits. We expect that approaches that integrate these data sources will play increasingly important roles in disease gene discovery and variant interpretation. Expected final online publication date for the Annual Review of Biomedical Data Science, Volume 5 is August 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":29775,"journal":{"name":"Annual Review of Biomedical Data Science","volume":null,"pages":null},"PeriodicalIF":7.0000,"publicationDate":"2022-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integration of Protein Structure and Population-Scale DNA Sequence Data for Disease Gene Discovery and Variant Interpretation.\",\"authors\":\"Bian Li, Bowen Jin, J. Capra, W. Bush\",\"doi\":\"10.1146/annurev-biodatasci-122220-112147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The experimental and computational techniques for capturing information about protein structures and genetic variation within the human genome have advanced dramatically in the past 20 years, generating extensive new data resources. In this review, we discuss these advances, along with new approaches for determining the impact a genetic variant has on protein function. We focus on the potential of new methods that integrate human genetic variation into protein structures to discover relationships to disease, including the discovery of mutational hotspots in cancer-related proteins, the localization of protein-altering variants within protein regions for common complex diseases, and the assessment of variants of unknown significance for Mendelian traits. We expect that approaches that integrate these data sources will play increasingly important roles in disease gene discovery and variant interpretation. Expected final online publication date for the Annual Review of Biomedical Data Science, Volume 5 is August 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.\",\"PeriodicalId\":29775,\"journal\":{\"name\":\"Annual Review of Biomedical Data Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2022-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Biomedical Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-biodatasci-122220-112147\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Biomedical Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1146/annurev-biodatasci-122220-112147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Integration of Protein Structure and Population-Scale DNA Sequence Data for Disease Gene Discovery and Variant Interpretation.
The experimental and computational techniques for capturing information about protein structures and genetic variation within the human genome have advanced dramatically in the past 20 years, generating extensive new data resources. In this review, we discuss these advances, along with new approaches for determining the impact a genetic variant has on protein function. We focus on the potential of new methods that integrate human genetic variation into protein structures to discover relationships to disease, including the discovery of mutational hotspots in cancer-related proteins, the localization of protein-altering variants within protein regions for common complex diseases, and the assessment of variants of unknown significance for Mendelian traits. We expect that approaches that integrate these data sources will play increasingly important roles in disease gene discovery and variant interpretation. Expected final online publication date for the Annual Review of Biomedical Data Science, Volume 5 is August 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
期刊介绍:
The Annual Review of Biomedical Data Science provides comprehensive expert reviews in biomedical data science, focusing on advanced methods to store, retrieve, analyze, and organize biomedical data and knowledge. The scope of the journal encompasses informatics, computational, artificial intelligence (AI), and statistical approaches to biomedical data, including the sub-fields of bioinformatics, computational biology, biomedical informatics, clinical and clinical research informatics, biostatistics, and imaging informatics. The mission of the journal is to identify both emerging and established areas of biomedical data science, and the leaders in these fields.