无限状态系统的可扩展证明系统

IF 0.7 4区 数学 Q3 COMPUTER SCIENCE, THEORY & METHODS
J. Keiren, R. Cleaveland
{"title":"无限状态系统的可扩展证明系统","authors":"J. Keiren, R. Cleaveland","doi":"10.48550/arXiv.2207.12953","DOIUrl":null,"url":null,"abstract":"This paper revisits soundness and completeness of proof systems for proving that sets of states in infinite-state labeled transition systems satisfy formulas in the modal mu-calculus in order to develop proof techniques that permit the seamless inclusion of new features in this logic. Our approach relies on novel results in lattice theory, which give constructive characterizations of both greatest and least fixpoints of monotonic functions over complete lattices. We show how these results may be used to reason about the sound and complete tableau method for this problem due to Bradfield and Stirling. We also show how the flexibility of our lattice-theoretic basis simplifies reasoning about tableau-based proof strategies for alternative classes of systems. In particular, we extend the modal mu-calculus with timed modalities, and prove that the resulting tableau method is sound and complete for timed transition systems.","PeriodicalId":50916,"journal":{"name":"ACM Transactions on Computational Logic","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2022-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Extensible Proof Systems for Infinite-State Systems\",\"authors\":\"J. Keiren, R. Cleaveland\",\"doi\":\"10.48550/arXiv.2207.12953\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper revisits soundness and completeness of proof systems for proving that sets of states in infinite-state labeled transition systems satisfy formulas in the modal mu-calculus in order to develop proof techniques that permit the seamless inclusion of new features in this logic. Our approach relies on novel results in lattice theory, which give constructive characterizations of both greatest and least fixpoints of monotonic functions over complete lattices. We show how these results may be used to reason about the sound and complete tableau method for this problem due to Bradfield and Stirling. We also show how the flexibility of our lattice-theoretic basis simplifies reasoning about tableau-based proof strategies for alternative classes of systems. In particular, we extend the modal mu-calculus with timed modalities, and prove that the resulting tableau method is sound and complete for timed transition systems.\",\"PeriodicalId\":50916,\"journal\":{\"name\":\"ACM Transactions on Computational Logic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Computational Logic\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2207.12953\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Computational Logic","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.48550/arXiv.2207.12953","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 1

摘要

本文回顾了证明无限状态标记转移系统中的状态集满足模态模微积分公式的证明系统的完备性和完备性,以便开发允许在该逻辑中无缝包含新特征的证明技术。我们的方法依赖于格理论中的新结果,这些结果给出了完全格上单调函数的最大不动点和最小不动点的构造特征。我们展示了如何使用这些结果来推理Bradfield和Stirling的完整表格法。我们还展示了我们的格理论基础的灵活性如何简化了对可选系统类的基于表的证明策略的推理。特别地,我们将模态微积分推广到时间模态,并证明了所得到的表法对于时间跃迁系统是健全完备的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extensible Proof Systems for Infinite-State Systems
This paper revisits soundness and completeness of proof systems for proving that sets of states in infinite-state labeled transition systems satisfy formulas in the modal mu-calculus in order to develop proof techniques that permit the seamless inclusion of new features in this logic. Our approach relies on novel results in lattice theory, which give constructive characterizations of both greatest and least fixpoints of monotonic functions over complete lattices. We show how these results may be used to reason about the sound and complete tableau method for this problem due to Bradfield and Stirling. We also show how the flexibility of our lattice-theoretic basis simplifies reasoning about tableau-based proof strategies for alternative classes of systems. In particular, we extend the modal mu-calculus with timed modalities, and prove that the resulting tableau method is sound and complete for timed transition systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Computational Logic
ACM Transactions on Computational Logic 工程技术-计算机:理论方法
CiteScore
2.30
自引率
0.00%
发文量
37
审稿时长
>12 weeks
期刊介绍: TOCL welcomes submissions related to all aspects of logic as it pertains to topics in computer science. This area has a great tradition in computer science. Several researchers who earned the ACM Turing award have also contributed to this field, namely Edgar Codd (relational database systems), Stephen Cook (complexity of logical theories), Edsger W. Dijkstra, Robert W. Floyd, Tony Hoare, Amir Pnueli, Dana Scott, Edmond M. Clarke, Allen E. Emerson, and Joseph Sifakis (program logics, program derivation and verification, programming languages semantics), Robin Milner (interactive theorem proving, concurrency calculi, and functional programming), and John McCarthy (functional programming and logics in AI). Logic continues to play an important role in computer science and has permeated several of its areas, including artificial intelligence, computational complexity, database systems, and programming languages. The Editorial Board of this journal seeks and hopes to attract high-quality submissions in all the above-mentioned areas of computational logic so that TOCL becomes the standard reference in the field. Both theoretical and applied papers are sought. Submissions showing novel use of logic in computer science are especially welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信