环扩张上星运算的一些性质

IF 0.5 Q3 MATHEMATICS
Lokendra Paudel, S. Tchamna
{"title":"环扩张上星运算的一些性质","authors":"Lokendra Paudel, S. Tchamna","doi":"10.24330/IEJA.969592","DOIUrl":null,"url":null,"abstract":"Let ? be a star operation on a ring extension R ⊆ S. A ring extension R ⊆ S is called Prüfer star-multiplication extension (P?ME) if (R[m],m[m]) is a Manis pair in S for every ?-maximal ideal m of R [L. Paudel and S. Tchamna, A study of linked star operations, to appear in Bull. Korean Math. Soc., Definition 3.1]. We establish some results on star operations, and we study P?ME in pullback diagrams of type . We show that, for a maximal ideal m of R, the extension R[m] ⊆ S is Manis if and only if R[X][mR[X]] ⊆ S[X] is a Manis extension. Mathematics Subject Classification (2020): 13A15, 13A18, 13B02","PeriodicalId":43749,"journal":{"name":"International Electronic Journal of Algebra","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"SOME PROPERTIES OF STAR OPERATIONS ON RING EXTENSIONS\",\"authors\":\"Lokendra Paudel, S. Tchamna\",\"doi\":\"10.24330/IEJA.969592\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let ? be a star operation on a ring extension R ⊆ S. A ring extension R ⊆ S is called Prüfer star-multiplication extension (P?ME) if (R[m],m[m]) is a Manis pair in S for every ?-maximal ideal m of R [L. Paudel and S. Tchamna, A study of linked star operations, to appear in Bull. Korean Math. Soc., Definition 3.1]. We establish some results on star operations, and we study P?ME in pullback diagrams of type . We show that, for a maximal ideal m of R, the extension R[m] ⊆ S is Manis if and only if R[X][mR[X]] ⊆ S[X] is a Manis extension. Mathematics Subject Classification (2020): 13A15, 13A18, 13B02\",\"PeriodicalId\":43749,\"journal\":{\"name\":\"International Electronic Journal of Algebra\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Electronic Journal of Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24330/IEJA.969592\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Electronic Journal of Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24330/IEJA.969592","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

允许是环扩张R⊆S上的星运算。如果(R[m],m[m])是S中每-R的最大理想m[L.Paudel和S.Tchamna,连锁星运算的研究,出现在Bull.Korean Math.Soc.,定义3.1]。我们建立了一些关于星运算的结果,并研究了P?类型的回调图中的ME。我们证明,对于R的最大理想m,扩展R[m]⊆S是Manis当且仅当R[X][mR[X]]𕥄S[X]是Manis扩展。数学学科分类(2020):13A15、13A18、13B02
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SOME PROPERTIES OF STAR OPERATIONS ON RING EXTENSIONS
Let ? be a star operation on a ring extension R ⊆ S. A ring extension R ⊆ S is called Prüfer star-multiplication extension (P?ME) if (R[m],m[m]) is a Manis pair in S for every ?-maximal ideal m of R [L. Paudel and S. Tchamna, A study of linked star operations, to appear in Bull. Korean Math. Soc., Definition 3.1]. We establish some results on star operations, and we study P?ME in pullback diagrams of type . We show that, for a maximal ideal m of R, the extension R[m] ⊆ S is Manis if and only if R[X][mR[X]] ⊆ S[X] is a Manis extension. Mathematics Subject Classification (2020): 13A15, 13A18, 13B02
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
16.70%
发文量
36
审稿时长
36 weeks
期刊介绍: The International Electronic Journal of Algebra is published twice a year. IEJA is reviewed by Mathematical Reviews, MathSciNet, Zentralblatt MATH, Current Mathematical Publications. IEJA seeks previously unpublished papers that contain: Module theory Ring theory Group theory Algebras Comodules Corings Coalgebras Representation theory Number theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信