复合材料结构的紧固解决方案:摩擦接触、渐进复合材料损伤和延性金属损伤的模型和验证

IF 2.4 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Emre Erbil, R. Karakuzu
{"title":"复合材料结构的紧固解决方案:摩擦接触、渐进复合材料损伤和延性金属损伤的模型和验证","authors":"Emre Erbil, R. Karakuzu","doi":"10.1088/1361-651X/acd70d","DOIUrl":null,"url":null,"abstract":"In this study, the fundamental steps required for the mechanical analysis of bolted laminated composite structures were revealed. Advanced methods were developed in Fortran and Python to implement nonlinearity to the composite material model using MARC/MENTAT finite element software. Friction and damage parameters for HTA/6376 CFRP material are verified using experimental data sources in the literature. The critical Cockroft–Latham ductile damage parameter of AISI 304L sheet material with its anisotropic properties, which is required for the design of plastically deformable metal components in the composite joint, is computed. Good agreement was obtained between the friction and progressive damage of CFRP composite, ductile damage of AISI 304L, and the external experimental references.","PeriodicalId":18648,"journal":{"name":"Modelling and Simulation in Materials Science and Engineering","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fastening solutions on composite structures: model and verifications of contact with friction, progressive composite damage, and ductile metal damage\",\"authors\":\"Emre Erbil, R. Karakuzu\",\"doi\":\"10.1088/1361-651X/acd70d\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the fundamental steps required for the mechanical analysis of bolted laminated composite structures were revealed. Advanced methods were developed in Fortran and Python to implement nonlinearity to the composite material model using MARC/MENTAT finite element software. Friction and damage parameters for HTA/6376 CFRP material are verified using experimental data sources in the literature. The critical Cockroft–Latham ductile damage parameter of AISI 304L sheet material with its anisotropic properties, which is required for the design of plastically deformable metal components in the composite joint, is computed. Good agreement was obtained between the friction and progressive damage of CFRP composite, ductile damage of AISI 304L, and the external experimental references.\",\"PeriodicalId\":18648,\"journal\":{\"name\":\"Modelling and Simulation in Materials Science and Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modelling and Simulation in Materials Science and Engineering\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-651X/acd70d\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modelling and Simulation in Materials Science and Engineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-651X/acd70d","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,揭示了螺栓叠合复合材料结构力学分析的基本步骤。利用MARC/MENTAT有限元软件,在Fortran和Python语言中开发了实现复合材料模型非线性化的先进方法。HTA/6376 CFRP材料的摩擦和损伤参数使用文献中的实验数据源进行验证。计算了具有各向异性特性的aisi304l薄板材料的临界Cockroft-Latham韧性损伤参数,以满足复合接头中塑性变形金属构件的设计要求。CFRP复合材料的摩擦和渐进损伤、AISI 304L的延性损伤与外部实验文献吻合较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fastening solutions on composite structures: model and verifications of contact with friction, progressive composite damage, and ductile metal damage
In this study, the fundamental steps required for the mechanical analysis of bolted laminated composite structures were revealed. Advanced methods were developed in Fortran and Python to implement nonlinearity to the composite material model using MARC/MENTAT finite element software. Friction and damage parameters for HTA/6376 CFRP material are verified using experimental data sources in the literature. The critical Cockroft–Latham ductile damage parameter of AISI 304L sheet material with its anisotropic properties, which is required for the design of plastically deformable metal components in the composite joint, is computed. Good agreement was obtained between the friction and progressive damage of CFRP composite, ductile damage of AISI 304L, and the external experimental references.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
5.60%
发文量
96
审稿时长
1.7 months
期刊介绍: Serving the multidisciplinary materials community, the journal aims to publish new research work that advances the understanding and prediction of material behaviour at scales from atomistic to macroscopic through modelling and simulation. Subject coverage: Modelling and/or simulation across materials science that emphasizes fundamental materials issues advancing the understanding and prediction of material behaviour. Interdisciplinary research that tackles challenging and complex materials problems where the governing phenomena may span different scales of materials behaviour, with an emphasis on the development of quantitative approaches to explain and predict experimental observations. Material processing that advances the fundamental materials science and engineering underpinning the connection between processing and properties. Covering all classes of materials, and mechanical, microstructural, electronic, chemical, biological, and optical properties.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信