{"title":"从奇瓦瓦沙漠分类群M. scabra(翼蕨科)分离出的德克萨斯州和俄克拉何马州一新种","authors":"M. Windham, Kathryn T Picard, K. Pryer","doi":"10.1600/036364422X16573022073590","DOIUrl":null,"url":null,"abstract":"Abstract Myriopteris scabra (until recently called Cheilanthes horridula) is a xeric-adapted fern species, endemic to the southwestern United States and northern Mexico. It is one of the most recognizable ferns in North America due to the unusual nature of the indument present on its adaxial leaf surfaces. This consists of rigid, multicellular trichomes with glassy, needle-like apices and compact conical bodies that are partially embedded in the leaf surface to form swollen, pustulate bases. Despite the seemingly distinctive nature of M. scabra, published chromosome counts indicate that collections assigned to this taxon encompass both diploids (n = 29) and tetraploids (n = 58). Here we investigate this case of cryptic diversity by integrating data from cytogenetic and spore analyses, observations of sporophyte morphology, and geographic distributions. Myriopteris scabra s.l. is shown to comprise two genetically disparate, morphologically recognizable taxa that exhibit little or no geographic overlap. The tetraploid taxon is described as a new species, M. grusziae, which completely supplants diploid M. scabra in the northeastern portion of its range (central Texas and south-central Oklahoma). This presumed allotetraploid is most like M. scabra but differs in having ultimate segments with adaxial trichomes that are longer, more flexible, mostly linear, and superficially attached. In addition, tetraploid M. grusziae has larger, more abundant scales that largely conceal the dark, sclerified leaf rachises, and it produces consistently larger spores than diploid M. scabra. We hypothesize that M. grusziae is an allotetraploid hybrid that acquired half of its chromosomes from M. scabra. However, the identity of the other diploid parent has yet to be resolved.","PeriodicalId":54438,"journal":{"name":"Systematic Botany","volume":"47 1","pages":"876 - 886"},"PeriodicalIF":0.9000,"publicationDate":"2022-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Myriopteris grusziae: A New Species from Texas and Oklahoma Segregated from the Chihuahuan Desert Taxon M. scabra (Pteridaceae)\",\"authors\":\"M. Windham, Kathryn T Picard, K. Pryer\",\"doi\":\"10.1600/036364422X16573022073590\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Myriopteris scabra (until recently called Cheilanthes horridula) is a xeric-adapted fern species, endemic to the southwestern United States and northern Mexico. It is one of the most recognizable ferns in North America due to the unusual nature of the indument present on its adaxial leaf surfaces. This consists of rigid, multicellular trichomes with glassy, needle-like apices and compact conical bodies that are partially embedded in the leaf surface to form swollen, pustulate bases. Despite the seemingly distinctive nature of M. scabra, published chromosome counts indicate that collections assigned to this taxon encompass both diploids (n = 29) and tetraploids (n = 58). Here we investigate this case of cryptic diversity by integrating data from cytogenetic and spore analyses, observations of sporophyte morphology, and geographic distributions. Myriopteris scabra s.l. is shown to comprise two genetically disparate, morphologically recognizable taxa that exhibit little or no geographic overlap. The tetraploid taxon is described as a new species, M. grusziae, which completely supplants diploid M. scabra in the northeastern portion of its range (central Texas and south-central Oklahoma). This presumed allotetraploid is most like M. scabra but differs in having ultimate segments with adaxial trichomes that are longer, more flexible, mostly linear, and superficially attached. In addition, tetraploid M. grusziae has larger, more abundant scales that largely conceal the dark, sclerified leaf rachises, and it produces consistently larger spores than diploid M. scabra. We hypothesize that M. grusziae is an allotetraploid hybrid that acquired half of its chromosomes from M. scabra. However, the identity of the other diploid parent has yet to be resolved.\",\"PeriodicalId\":54438,\"journal\":{\"name\":\"Systematic Botany\",\"volume\":\"47 1\",\"pages\":\"876 - 886\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systematic Botany\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1600/036364422X16573022073590\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"EVOLUTIONARY BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systematic Botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1600/036364422X16573022073590","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
Myriopteris grusziae: A New Species from Texas and Oklahoma Segregated from the Chihuahuan Desert Taxon M. scabra (Pteridaceae)
Abstract Myriopteris scabra (until recently called Cheilanthes horridula) is a xeric-adapted fern species, endemic to the southwestern United States and northern Mexico. It is one of the most recognizable ferns in North America due to the unusual nature of the indument present on its adaxial leaf surfaces. This consists of rigid, multicellular trichomes with glassy, needle-like apices and compact conical bodies that are partially embedded in the leaf surface to form swollen, pustulate bases. Despite the seemingly distinctive nature of M. scabra, published chromosome counts indicate that collections assigned to this taxon encompass both diploids (n = 29) and tetraploids (n = 58). Here we investigate this case of cryptic diversity by integrating data from cytogenetic and spore analyses, observations of sporophyte morphology, and geographic distributions. Myriopteris scabra s.l. is shown to comprise two genetically disparate, morphologically recognizable taxa that exhibit little or no geographic overlap. The tetraploid taxon is described as a new species, M. grusziae, which completely supplants diploid M. scabra in the northeastern portion of its range (central Texas and south-central Oklahoma). This presumed allotetraploid is most like M. scabra but differs in having ultimate segments with adaxial trichomes that are longer, more flexible, mostly linear, and superficially attached. In addition, tetraploid M. grusziae has larger, more abundant scales that largely conceal the dark, sclerified leaf rachises, and it produces consistently larger spores than diploid M. scabra. We hypothesize that M. grusziae is an allotetraploid hybrid that acquired half of its chromosomes from M. scabra. However, the identity of the other diploid parent has yet to be resolved.
期刊介绍:
Systematic Botany Monographs is a series of peer-reviewed taxonomic monographs and revisions published the American Society of Plant Taxonomists. ISSN 0737-8211, ISBN prefix 978-0-912861. No; volumes of Systematic Botany Monographs must be ordered separately. ASPT membership inludes only a subscription to the quarterly journal Systematic Botany. SBM is supported by sales, author"s subsidies, and donations.