{"title":"基于分形理论的高层建筑室外颗粒物分布及分形特征","authors":"Fuquan Liu, Tao Yu, Wenjun Leng, Xin Zhang","doi":"10.3390/fractalfract7090669","DOIUrl":null,"url":null,"abstract":"It is of great significance to understand the particle distribution characteristics at different heights to effectively control particle pollution. Based on fractal theory, the fractal dimension of outdoor particles in a high-rise building in Xi’an and its relationship with the concentration of particles with different particle sizes are discussed and analyzed in this paper. The results indicate that the atmosphere in Xi’an is mainly composed of fine particles and that the average proportion of particles ranging from 0 to 1.0 µm is approximately 99.885% of the total particulates. The fractal dimension of particles in the atmosphere at different heights ranges from 5.014 to 5.764, with an average fractal dimension of 5.456. In summer, the fractal dimension of the outdoor particles on the 17th floor was the largest, at 5.764. The fractal dimension in summer is relatively high, being 0.158 higher than that in winter on average. The larger the fractal dimension, the higher the proportion of fine particles. In addition, the fractal dimension can characterize the adsorption of toxic and harmful gases by particles well. It provides parameter support for understanding particle distribution and the effective control of atmospheric particles at different heights and application values.","PeriodicalId":12435,"journal":{"name":"Fractal and Fractional","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Distribution and Fractal Characteristics of Outdoor Particles in High-Rise Buildings Based on Fractal Theory\",\"authors\":\"Fuquan Liu, Tao Yu, Wenjun Leng, Xin Zhang\",\"doi\":\"10.3390/fractalfract7090669\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is of great significance to understand the particle distribution characteristics at different heights to effectively control particle pollution. Based on fractal theory, the fractal dimension of outdoor particles in a high-rise building in Xi’an and its relationship with the concentration of particles with different particle sizes are discussed and analyzed in this paper. The results indicate that the atmosphere in Xi’an is mainly composed of fine particles and that the average proportion of particles ranging from 0 to 1.0 µm is approximately 99.885% of the total particulates. The fractal dimension of particles in the atmosphere at different heights ranges from 5.014 to 5.764, with an average fractal dimension of 5.456. In summer, the fractal dimension of the outdoor particles on the 17th floor was the largest, at 5.764. The fractal dimension in summer is relatively high, being 0.158 higher than that in winter on average. The larger the fractal dimension, the higher the proportion of fine particles. In addition, the fractal dimension can characterize the adsorption of toxic and harmful gases by particles well. It provides parameter support for understanding particle distribution and the effective control of atmospheric particles at different heights and application values.\",\"PeriodicalId\":12435,\"journal\":{\"name\":\"Fractal and Fractional\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractal and Fractional\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3390/fractalfract7090669\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractal and Fractional","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3390/fractalfract7090669","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Distribution and Fractal Characteristics of Outdoor Particles in High-Rise Buildings Based on Fractal Theory
It is of great significance to understand the particle distribution characteristics at different heights to effectively control particle pollution. Based on fractal theory, the fractal dimension of outdoor particles in a high-rise building in Xi’an and its relationship with the concentration of particles with different particle sizes are discussed and analyzed in this paper. The results indicate that the atmosphere in Xi’an is mainly composed of fine particles and that the average proportion of particles ranging from 0 to 1.0 µm is approximately 99.885% of the total particulates. The fractal dimension of particles in the atmosphere at different heights ranges from 5.014 to 5.764, with an average fractal dimension of 5.456. In summer, the fractal dimension of the outdoor particles on the 17th floor was the largest, at 5.764. The fractal dimension in summer is relatively high, being 0.158 higher than that in winter on average. The larger the fractal dimension, the higher the proportion of fine particles. In addition, the fractal dimension can characterize the adsorption of toxic and harmful gases by particles well. It provides parameter support for understanding particle distribution and the effective control of atmospheric particles at different heights and application values.
期刊介绍:
Fractal and Fractional is an international, scientific, peer-reviewed, open access journal that focuses on the study of fractals and fractional calculus, as well as their applications across various fields of science and engineering. It is published monthly online by MDPI and offers a cutting-edge platform for research papers, reviews, and short notes in this specialized area. The journal, identified by ISSN 2504-3110, encourages scientists to submit their experimental and theoretical findings in great detail, with no limits on the length of manuscripts to ensure reproducibility. A key objective is to facilitate the publication of detailed research, including experimental procedures and calculations. "Fractal and Fractional" also stands out for its unique offerings: it warmly welcomes manuscripts related to research proposals and innovative ideas, and allows for the deposition of electronic files containing detailed calculations and experimental protocols as supplementary material.