孤立点强各向异性II型爆炸

IF 3.5 1区 数学 Q1 MATHEMATICS
Charles Collot, F. Merle, Pierre Raphael
{"title":"孤立点强各向异性II型爆炸","authors":"Charles Collot, F. Merle, Pierre Raphael","doi":"10.1090/jams/941","DOIUrl":null,"url":null,"abstract":"We consider the energy supercritical \n\n \n \n d\n +\n 1\n \n d+1\n \n\n-dimensional semi-linear heat equation \n\n \n \n \n ∂\n t\n \n u\n =\n Δ\n u\n +\n \n u\n \n p\n \n \n ,\n  \n  \n x\n ∈\n \n \n R\n \n \n d\n +\n 1\n \n \n ,\n  \n  \n p\n ≥\n 3\n ,\n  \n d\n ≥\n 14.\n \n \\begin{equation*} \\partial _tu=\\Delta u+u^{p}, \\ \\ x\\in \\Bbb R^{d+1}, \\ \\ p\\geq 3, \\ d\\geq 14. \\end{equation*}\n \n\n\n A fundamental open problem on this canonical nonlinear model is to understand the possible blow-up profiles appearing after renormalisation of a singularity. We exhibit in this paper a new scenario corresponding to the first example of a strongly anisotropic blow-up bubble: the solution displays a completely different behaviour depending on the considered direction in space. A fundamental step of the analysis is to solve the reconnection problem in order to produce finite energy solutions which is the heart of the matter. The corresponding anistropic mechanism is expected to be of fundamental importance in other settings in particular in fluid mechanics. The proof relies on a new functional framework for the construction and stabilisation of type II bubbles in the parabolic setting using energy estimates only, and allows us to exhibit new unexpected blow-up speeds.","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":"33 1","pages":"527-607"},"PeriodicalIF":3.5000,"publicationDate":"2020-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1090/jams/941","citationCount":"17","resultStr":"{\"title\":\"Strongly anisotropic type II blow up at an isolated point\",\"authors\":\"Charles Collot, F. Merle, Pierre Raphael\",\"doi\":\"10.1090/jams/941\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the energy supercritical \\n\\n \\n \\n d\\n +\\n 1\\n \\n d+1\\n \\n\\n-dimensional semi-linear heat equation \\n\\n \\n \\n \\n ∂\\n t\\n \\n u\\n =\\n Δ\\n u\\n +\\n \\n u\\n \\n p\\n \\n \\n ,\\n  \\n  \\n x\\n ∈\\n \\n \\n R\\n \\n \\n d\\n +\\n 1\\n \\n \\n ,\\n  \\n  \\n p\\n ≥\\n 3\\n ,\\n  \\n d\\n ≥\\n 14.\\n \\n \\\\begin{equation*} \\\\partial _tu=\\\\Delta u+u^{p}, \\\\ \\\\ x\\\\in \\\\Bbb R^{d+1}, \\\\ \\\\ p\\\\geq 3, \\\\ d\\\\geq 14. \\\\end{equation*}\\n \\n\\n\\n A fundamental open problem on this canonical nonlinear model is to understand the possible blow-up profiles appearing after renormalisation of a singularity. We exhibit in this paper a new scenario corresponding to the first example of a strongly anisotropic blow-up bubble: the solution displays a completely different behaviour depending on the considered direction in space. A fundamental step of the analysis is to solve the reconnection problem in order to produce finite energy solutions which is the heart of the matter. The corresponding anistropic mechanism is expected to be of fundamental importance in other settings in particular in fluid mechanics. The proof relies on a new functional framework for the construction and stabilisation of type II bubbles in the parabolic setting using energy estimates only, and allows us to exhibit new unexpected blow-up speeds.\",\"PeriodicalId\":54764,\"journal\":{\"name\":\"Journal of the American Mathematical Society\",\"volume\":\"33 1\",\"pages\":\"527-607\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2020-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1090/jams/941\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/jams/941\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/jams/941","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 17

摘要

我们考虑能量超临界d+1 d+1维半线性热方程∂t u = Δ u + up, x∈R d+1, p≥3,d≥14。\begin{equation*} \partial _tu=\Delta u+u^{p}, \ \ x\in \Bbb R^{d+1}, \ \ p\geq 3, \ d\geq 14. \end{equation*}这个典型非线性模型的一个基本开放问题是理解奇点重整化后可能出现的爆破轮廓。我们在本文中展示了一个新的场景,对应于一个强各向异性爆破气泡的第一个例子:根据所考虑的空间方向,解显示出完全不同的行为。分析的一个基本步骤是解决重连问题,以便产生有限能量的解,这是问题的核心。相应的各向异性机制预计将在其他环境中,特别是在流体力学中具有基本的重要性。该证明依赖于一个新的功能框架,仅使用能量估计就可以在抛物线环境中构建和稳定II型气泡,并允许我们展示新的意想不到的爆破速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strongly anisotropic type II blow up at an isolated point
We consider the energy supercritical d + 1 d+1 -dimensional semi-linear heat equation ∂ t u = Δ u + u p ,     x ∈ R d + 1 ,     p ≥ 3 ,   d ≥ 14. \begin{equation*} \partial _tu=\Delta u+u^{p}, \ \ x\in \Bbb R^{d+1}, \ \ p\geq 3, \ d\geq 14. \end{equation*} A fundamental open problem on this canonical nonlinear model is to understand the possible blow-up profiles appearing after renormalisation of a singularity. We exhibit in this paper a new scenario corresponding to the first example of a strongly anisotropic blow-up bubble: the solution displays a completely different behaviour depending on the considered direction in space. A fundamental step of the analysis is to solve the reconnection problem in order to produce finite energy solutions which is the heart of the matter. The corresponding anistropic mechanism is expected to be of fundamental importance in other settings in particular in fluid mechanics. The proof relies on a new functional framework for the construction and stabilisation of type II bubbles in the parabolic setting using energy estimates only, and allows us to exhibit new unexpected blow-up speeds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.60
自引率
0.00%
发文量
14
审稿时长
>12 weeks
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to research articles of the highest quality in all areas of pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信