高亏格模图张量之间的恒等式

IF 1.2 3区 数学 Q1 MATHEMATICS
E. D'hoker, O. Schlotterer
{"title":"高亏格模图张量之间的恒等式","authors":"E. D'hoker, O. Schlotterer","doi":"10.4310/cntp.2022.v16.n1.a2","DOIUrl":null,"url":null,"abstract":"Higher genus modular graph tensors map Feynman graphs to functions on the Torelli space of genus-$h$ compact Riemann surfaces which transform as tensors under the modular group $Sp(2h , \\mathbb Z)$, thereby generalizing a construction of Kawazumi. An infinite family of algebraic identities between one-loop and tree-level modular graph tensors are proven for arbitrary genus and arbitrary tensorial rank. We also derive a family of identities that apply to modular graph tensors of higher loop order.","PeriodicalId":55616,"journal":{"name":"Communications in Number Theory and Physics","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2020-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Identities among higher genus modular graph tensors\",\"authors\":\"E. D'hoker, O. Schlotterer\",\"doi\":\"10.4310/cntp.2022.v16.n1.a2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Higher genus modular graph tensors map Feynman graphs to functions on the Torelli space of genus-$h$ compact Riemann surfaces which transform as tensors under the modular group $Sp(2h , \\\\mathbb Z)$, thereby generalizing a construction of Kawazumi. An infinite family of algebraic identities between one-loop and tree-level modular graph tensors are proven for arbitrary genus and arbitrary tensorial rank. We also derive a family of identities that apply to modular graph tensors of higher loop order.\",\"PeriodicalId\":55616,\"journal\":{\"name\":\"Communications in Number Theory and Physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2020-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Number Theory and Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/cntp.2022.v16.n1.a2\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Number Theory and Physics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cntp.2022.v16.n1.a2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 11

摘要

高亏格模图张量将Feynman图映射到亏格-$h$紧Riemann曲面的Torelli空间上的函数,这些函数在模群$Sp(2h,\mathbb Z)$下变换为张量,从而推广了Kawazumi的一个构造。对于任意亏格和任意张量秩,证明了一个环与树级模图张量之间的代数恒等式的无穷大族。我们还导出了一个适用于高循环阶模图张量的恒等式族。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identities among higher genus modular graph tensors
Higher genus modular graph tensors map Feynman graphs to functions on the Torelli space of genus-$h$ compact Riemann surfaces which transform as tensors under the modular group $Sp(2h , \mathbb Z)$, thereby generalizing a construction of Kawazumi. An infinite family of algebraic identities between one-loop and tree-level modular graph tensors are proven for arbitrary genus and arbitrary tensorial rank. We also derive a family of identities that apply to modular graph tensors of higher loop order.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Number Theory and Physics
Communications in Number Theory and Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
5.30%
发文量
8
审稿时长
>12 weeks
期刊介绍: Focused on the applications of number theory in the broadest sense to theoretical physics. Offers a forum for communication among researchers in number theory and theoretical physics by publishing primarily research, review, and expository articles regarding the relationship and dynamics between the two fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信