{"title":"槽块几何形状对USBR-II消力池性能的影响","authors":"Layla Ali Mohammed Saleh, Saleh Issa Khassaf","doi":"10.14525/jjce.v17i3.12","DOIUrl":null,"url":null,"abstract":"Stilling basins are designed to reduce the high kinetic energy of supercritical flow in a downstream spillway. The USBR II stilling basin is distinguished by chute blocks fixed at the upstream end and a dented sill at the downstream end, allowing for the effective dissipation of excess energy. This research investigates the effect of chute-block geometry on the hydraulic performance of the USBR II stilling basin. Six modified chute-blocks with identical dimensions and spacings as standard blocks were constructed and evaluated for six incoming Froude-number values. The results indicate that chute blocks containing stepped side walls are more effective than standard blocks, increasing energy dissipation by 1.47% and decreasing the sequent depth ratio by 3.91%. Blocks with gradually increased spacings lose 0.7% more energy than standard blocks and reduce the sequential depth ratio by 1.91%. However, blocks with prismatic spacings and top surface angles of 152 degrees, relative to the downstream slope of the spillway, are less effective than standard blocks with energy dissipation reduced by 2.73% and the depth ratio increased by 7.24%.","PeriodicalId":51814,"journal":{"name":"Jordan Journal of Civil Engineering","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of Chute Block Geometry on the Performance of the USBR II Stilling Basin\",\"authors\":\"Layla Ali Mohammed Saleh, Saleh Issa Khassaf\",\"doi\":\"10.14525/jjce.v17i3.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stilling basins are designed to reduce the high kinetic energy of supercritical flow in a downstream spillway. The USBR II stilling basin is distinguished by chute blocks fixed at the upstream end and a dented sill at the downstream end, allowing for the effective dissipation of excess energy. This research investigates the effect of chute-block geometry on the hydraulic performance of the USBR II stilling basin. Six modified chute-blocks with identical dimensions and spacings as standard blocks were constructed and evaluated for six incoming Froude-number values. The results indicate that chute blocks containing stepped side walls are more effective than standard blocks, increasing energy dissipation by 1.47% and decreasing the sequent depth ratio by 3.91%. Blocks with gradually increased spacings lose 0.7% more energy than standard blocks and reduce the sequential depth ratio by 1.91%. However, blocks with prismatic spacings and top surface angles of 152 degrees, relative to the downstream slope of the spillway, are less effective than standard blocks with energy dissipation reduced by 2.73% and the depth ratio increased by 7.24%.\",\"PeriodicalId\":51814,\"journal\":{\"name\":\"Jordan Journal of Civil Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jordan Journal of Civil Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14525/jjce.v17i3.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jordan Journal of Civil Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14525/jjce.v17i3.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Effects of Chute Block Geometry on the Performance of the USBR II Stilling Basin
Stilling basins are designed to reduce the high kinetic energy of supercritical flow in a downstream spillway. The USBR II stilling basin is distinguished by chute blocks fixed at the upstream end and a dented sill at the downstream end, allowing for the effective dissipation of excess energy. This research investigates the effect of chute-block geometry on the hydraulic performance of the USBR II stilling basin. Six modified chute-blocks with identical dimensions and spacings as standard blocks were constructed and evaluated for six incoming Froude-number values. The results indicate that chute blocks containing stepped side walls are more effective than standard blocks, increasing energy dissipation by 1.47% and decreasing the sequent depth ratio by 3.91%. Blocks with gradually increased spacings lose 0.7% more energy than standard blocks and reduce the sequential depth ratio by 1.91%. However, blocks with prismatic spacings and top surface angles of 152 degrees, relative to the downstream slope of the spillway, are less effective than standard blocks with energy dissipation reduced by 2.73% and the depth ratio increased by 7.24%.
期刊介绍:
I am very pleased and honored to be appointed as an Editor-in-Chief of the Jordan Journal of Civil Engineering which enjoys an excellent reputation, both locally and internationally. Since development is the essence of life, I hope to continue developing this distinguished Journal, building on the effort of all the Editors-in-Chief and Editorial Board Members as well as Advisory Boards of the Journal since its establishment about a decade ago. I will do my best to focus on publishing high quality diverse articles and move forward in the indexing issue of the Journal.