二分图Kirchhoff指数的一个改进下界

IF 1 Q1 MATHEMATICS
S. Altindag, I. Milovanovic, E. Milovanovic, M. Matejic
{"title":"二分图Kirchhoff指数的一个改进下界","authors":"S. Altindag, I. Milovanovic, E. Milovanovic, M. Matejic","doi":"10.47443/dml.2021.0118","DOIUrl":null,"url":null,"abstract":"Abstract For a connected graphGwithn vertices andm edges, the degree Kirchhoff index ofG is defined asKf∗ (G) = 2m ∑n−1 i=1 (γi) , where γ1 ≥ γ2 ≥ · · · ≥ γn−1 > γn = 0 are the normalized Laplacian eigenvalues of G. In this paper, a lower bound on the degree Kirchhoff index of bipartite graphs is established. Also, it is proved that the obtained bound is stronger than a lower bound derived by Zhou and Trinajstić in [J. Math. Chem. 46 (2009) 283–289].","PeriodicalId":36023,"journal":{"name":"Discrete Mathematics Letters","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Improved Lower Bound for the Degree Kirchhoff Index of Bipartite Graphs\",\"authors\":\"S. Altindag, I. Milovanovic, E. Milovanovic, M. Matejic\",\"doi\":\"10.47443/dml.2021.0118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract For a connected graphGwithn vertices andm edges, the degree Kirchhoff index ofG is defined asKf∗ (G) = 2m ∑n−1 i=1 (γi) , where γ1 ≥ γ2 ≥ · · · ≥ γn−1 > γn = 0 are the normalized Laplacian eigenvalues of G. In this paper, a lower bound on the degree Kirchhoff index of bipartite graphs is established. Also, it is proved that the obtained bound is stronger than a lower bound derived by Zhou and Trinajstić in [J. Math. Chem. 46 (2009) 283–289].\",\"PeriodicalId\":36023,\"journal\":{\"name\":\"Discrete Mathematics Letters\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47443/dml.2021.0118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47443/dml.2021.0118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要对于一个有n个顶点和m条边的连通图G,度Kirchhoff指数G定义为Kf*(G)=2m∑n−1i=1(γi),其中γ1≥γ2≥··≥γn−1>γn=0是G的归一化拉普拉斯特征值。此外,还证明了所获得的界强于周和Trinajstić在[J.Math.Chem.46(2009)283-289]中导出的下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Improved Lower Bound for the Degree Kirchhoff Index of Bipartite Graphs
Abstract For a connected graphGwithn vertices andm edges, the degree Kirchhoff index ofG is defined asKf∗ (G) = 2m ∑n−1 i=1 (γi) , where γ1 ≥ γ2 ≥ · · · ≥ γn−1 > γn = 0 are the normalized Laplacian eigenvalues of G. In this paper, a lower bound on the degree Kirchhoff index of bipartite graphs is established. Also, it is proved that the obtained bound is stronger than a lower bound derived by Zhou and Trinajstić in [J. Math. Chem. 46 (2009) 283–289].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Mathematics Letters
Discrete Mathematics Letters Mathematics-Discrete Mathematics and Combinatorics
CiteScore
1.50
自引率
12.50%
发文量
47
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信