S. Altindag, I. Milovanovic, E. Milovanovic, M. Matejic
{"title":"二分图Kirchhoff指数的一个改进下界","authors":"S. Altindag, I. Milovanovic, E. Milovanovic, M. Matejic","doi":"10.47443/dml.2021.0118","DOIUrl":null,"url":null,"abstract":"Abstract For a connected graphGwithn vertices andm edges, the degree Kirchhoff index ofG is defined asKf∗ (G) = 2m ∑n−1 i=1 (γi) , where γ1 ≥ γ2 ≥ · · · ≥ γn−1 > γn = 0 are the normalized Laplacian eigenvalues of G. In this paper, a lower bound on the degree Kirchhoff index of bipartite graphs is established. Also, it is proved that the obtained bound is stronger than a lower bound derived by Zhou and Trinajstić in [J. Math. Chem. 46 (2009) 283–289].","PeriodicalId":36023,"journal":{"name":"Discrete Mathematics Letters","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Improved Lower Bound for the Degree Kirchhoff Index of Bipartite Graphs\",\"authors\":\"S. Altindag, I. Milovanovic, E. Milovanovic, M. Matejic\",\"doi\":\"10.47443/dml.2021.0118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract For a connected graphGwithn vertices andm edges, the degree Kirchhoff index ofG is defined asKf∗ (G) = 2m ∑n−1 i=1 (γi) , where γ1 ≥ γ2 ≥ · · · ≥ γn−1 > γn = 0 are the normalized Laplacian eigenvalues of G. In this paper, a lower bound on the degree Kirchhoff index of bipartite graphs is established. Also, it is proved that the obtained bound is stronger than a lower bound derived by Zhou and Trinajstić in [J. Math. Chem. 46 (2009) 283–289].\",\"PeriodicalId\":36023,\"journal\":{\"name\":\"Discrete Mathematics Letters\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47443/dml.2021.0118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47443/dml.2021.0118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
An Improved Lower Bound for the Degree Kirchhoff Index of Bipartite Graphs
Abstract For a connected graphGwithn vertices andm edges, the degree Kirchhoff index ofG is defined asKf∗ (G) = 2m ∑n−1 i=1 (γi) , where γ1 ≥ γ2 ≥ · · · ≥ γn−1 > γn = 0 are the normalized Laplacian eigenvalues of G. In this paper, a lower bound on the degree Kirchhoff index of bipartite graphs is established. Also, it is proved that the obtained bound is stronger than a lower bound derived by Zhou and Trinajstić in [J. Math. Chem. 46 (2009) 283–289].