锐无限锥上Robin特征值的渐近性

IF 1 3区 数学 Q1 MATHEMATICS
Konstantin Pankrashkin, Marco Vogel
{"title":"锐无限锥上Robin特征值的渐近性","authors":"Konstantin Pankrashkin, Marco Vogel","doi":"10.4171/JST/452","DOIUrl":null,"url":null,"abstract":"Let $\\omega\\subset\\mathbb{R}^n$ be a bounded domain with Lipschitz boundary. For $\\varepsilon>0$ and $n\\in\\mathbb{N}$ consider the infinite cone $\\Omega_{\\varepsilon}:=\\big\\{(x_1,x')\\in (0,\\infty)\\times\\mathbb{R}^n: x'\\in\\varepsilon x_1\\omega\\big\\}\\subset\\mathbb{R}^{n+1}$ and the operator $Q_{\\varepsilon}^{\\alpha}$ acting as the Laplacian $u\\mapsto-\\Delta u$ on $\\Omega_{\\varepsilon}$ with the Robin boundary condition $\\partial_\\nu u=\\alpha u$ at $\\partial\\Omega_\\varepsilon$, where $\\partial_\\nu$ is the outward normal derivative and $\\alpha>0$. We look at the dependence of the eigenvalues of $Q_\\varepsilon^\\alpha$ on the parameter $\\varepsilon$: this problem was previously addressed for $n=1$ only (in that case, the only admissible $\\omega$ are finite intervals). In the present work we consider arbitrary dimensions $n\\ge2$ and arbitrarily shaped\"cross-sections\"$\\omega$ and look at the spectral asymptotics as $\\varepsilon$ becomes small, i.e. as the cone becomes\"sharp\"and collapses to a half-line. It turns out that the main term of the asymptotics of individual eigenvalues is determined by the single geometric quantity $N_\\omega:=\\dfrac{\\mathrm{Vol}_{n-1} \\partial\\omega }{\\mathrm{Vol}_n \\omega}$. More precisely, for any fixed $j\\in \\mathbb{N}$ and $\\alpha>0$ the $j$th eigenvalue $E_j(Q^\\alpha_\\varepsilon)$ of $Q^\\alpha_\\varepsilon$ exists for all sufficiently small $\\varepsilon>0$ and satisfies $E_j(Q^\\alpha_\\varepsilon)=-\\dfrac{N_\\omega^2\\,\\alpha^2}{(2j+n-2)^2\\,\\varepsilon^2}+O\\left(\\dfrac{1}{\\varepsilon}\\right)$ as $\\varepsilon\\to 0^+$. The paper also covers some aspects of Sobolev spaces on infinite cones, which can be of independent interest.","PeriodicalId":48789,"journal":{"name":"Journal of Spectral Theory","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Asymptotics of Robin eigenvalues on sharp infinite cones\",\"authors\":\"Konstantin Pankrashkin, Marco Vogel\",\"doi\":\"10.4171/JST/452\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\omega\\\\subset\\\\mathbb{R}^n$ be a bounded domain with Lipschitz boundary. For $\\\\varepsilon>0$ and $n\\\\in\\\\mathbb{N}$ consider the infinite cone $\\\\Omega_{\\\\varepsilon}:=\\\\big\\\\{(x_1,x')\\\\in (0,\\\\infty)\\\\times\\\\mathbb{R}^n: x'\\\\in\\\\varepsilon x_1\\\\omega\\\\big\\\\}\\\\subset\\\\mathbb{R}^{n+1}$ and the operator $Q_{\\\\varepsilon}^{\\\\alpha}$ acting as the Laplacian $u\\\\mapsto-\\\\Delta u$ on $\\\\Omega_{\\\\varepsilon}$ with the Robin boundary condition $\\\\partial_\\\\nu u=\\\\alpha u$ at $\\\\partial\\\\Omega_\\\\varepsilon$, where $\\\\partial_\\\\nu$ is the outward normal derivative and $\\\\alpha>0$. We look at the dependence of the eigenvalues of $Q_\\\\varepsilon^\\\\alpha$ on the parameter $\\\\varepsilon$: this problem was previously addressed for $n=1$ only (in that case, the only admissible $\\\\omega$ are finite intervals). In the present work we consider arbitrary dimensions $n\\\\ge2$ and arbitrarily shaped\\\"cross-sections\\\"$\\\\omega$ and look at the spectral asymptotics as $\\\\varepsilon$ becomes small, i.e. as the cone becomes\\\"sharp\\\"and collapses to a half-line. It turns out that the main term of the asymptotics of individual eigenvalues is determined by the single geometric quantity $N_\\\\omega:=\\\\dfrac{\\\\mathrm{Vol}_{n-1} \\\\partial\\\\omega }{\\\\mathrm{Vol}_n \\\\omega}$. More precisely, for any fixed $j\\\\in \\\\mathbb{N}$ and $\\\\alpha>0$ the $j$th eigenvalue $E_j(Q^\\\\alpha_\\\\varepsilon)$ of $Q^\\\\alpha_\\\\varepsilon$ exists for all sufficiently small $\\\\varepsilon>0$ and satisfies $E_j(Q^\\\\alpha_\\\\varepsilon)=-\\\\dfrac{N_\\\\omega^2\\\\,\\\\alpha^2}{(2j+n-2)^2\\\\,\\\\varepsilon^2}+O\\\\left(\\\\dfrac{1}{\\\\varepsilon}\\\\right)$ as $\\\\varepsilon\\\\to 0^+$. The paper also covers some aspects of Sobolev spaces on infinite cones, which can be of independent interest.\",\"PeriodicalId\":48789,\"journal\":{\"name\":\"Journal of Spectral Theory\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Spectral Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/JST/452\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Spectral Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/JST/452","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

让 $\omega\subset\mathbb{R}^n$ 是具有Lipschitz边界的有界域。因为 $\varepsilon>0$ 和 $n\in\mathbb{N}$ 考虑无限锥 $\Omega_{\varepsilon}:=\big\{(x_1,x')\in (0,\infty)\times\mathbb{R}^n: x'\in\varepsilon x_1\omega\big\}\subset\mathbb{R}^{n+1}$ 算子 $Q_{\varepsilon}^{\alpha}$ 扮演拉普拉斯的角色 $u\mapsto-\Delta u$ on $\Omega_{\varepsilon}$ 用Robin边界条件 $\partial_\nu u=\alpha u$ 在 $\partial\Omega_\varepsilon$,其中 $\partial_\nu$ 向外法向导数是 $\alpha>0$. 我们看特征值的依赖关系 $Q_\varepsilon^\alpha$ 关于参数 $\varepsilon$这个问题以前已经解决了 $n=1$ 在这种情况下,唯一可以接受的 $\omega$ 是有限区间)。在本工作中,我们考虑任意维度 $n\ge2$ 以及任意形状的“横截面”$\omega$ 把谱渐近看成 $\varepsilon$ 变小,即圆锥体变得“尖锐”并塌陷成一条半线。结果表明,单个特征值渐近的主要项由单个几何量决定 $N_\omega:=\dfrac{\mathrm{Vol}_{n-1} \partial\omega }{\mathrm{Vol}_n \omega}$. 更准确地说,对于任何固定的 $j\in \mathbb{N}$ 和 $\alpha>0$ the $j$特征值 $E_j(Q^\alpha_\varepsilon)$ 的 $Q^\alpha_\varepsilon$ 存在于所有足够小的 $\varepsilon>0$ 满足 $E_j(Q^\alpha_\varepsilon)=-\dfrac{N_\omega^2\,\alpha^2}{(2j+n-2)^2\,\varepsilon^2}+O\left(\dfrac{1}{\varepsilon}\right)$ as $\varepsilon\to 0^+$. 本文还讨论了无限锥上Sobolev空间的一些独立的方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotics of Robin eigenvalues on sharp infinite cones
Let $\omega\subset\mathbb{R}^n$ be a bounded domain with Lipschitz boundary. For $\varepsilon>0$ and $n\in\mathbb{N}$ consider the infinite cone $\Omega_{\varepsilon}:=\big\{(x_1,x')\in (0,\infty)\times\mathbb{R}^n: x'\in\varepsilon x_1\omega\big\}\subset\mathbb{R}^{n+1}$ and the operator $Q_{\varepsilon}^{\alpha}$ acting as the Laplacian $u\mapsto-\Delta u$ on $\Omega_{\varepsilon}$ with the Robin boundary condition $\partial_\nu u=\alpha u$ at $\partial\Omega_\varepsilon$, where $\partial_\nu$ is the outward normal derivative and $\alpha>0$. We look at the dependence of the eigenvalues of $Q_\varepsilon^\alpha$ on the parameter $\varepsilon$: this problem was previously addressed for $n=1$ only (in that case, the only admissible $\omega$ are finite intervals). In the present work we consider arbitrary dimensions $n\ge2$ and arbitrarily shaped"cross-sections"$\omega$ and look at the spectral asymptotics as $\varepsilon$ becomes small, i.e. as the cone becomes"sharp"and collapses to a half-line. It turns out that the main term of the asymptotics of individual eigenvalues is determined by the single geometric quantity $N_\omega:=\dfrac{\mathrm{Vol}_{n-1} \partial\omega }{\mathrm{Vol}_n \omega}$. More precisely, for any fixed $j\in \mathbb{N}$ and $\alpha>0$ the $j$th eigenvalue $E_j(Q^\alpha_\varepsilon)$ of $Q^\alpha_\varepsilon$ exists for all sufficiently small $\varepsilon>0$ and satisfies $E_j(Q^\alpha_\varepsilon)=-\dfrac{N_\omega^2\,\alpha^2}{(2j+n-2)^2\,\varepsilon^2}+O\left(\dfrac{1}{\varepsilon}\right)$ as $\varepsilon\to 0^+$. The paper also covers some aspects of Sobolev spaces on infinite cones, which can be of independent interest.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Spectral Theory
Journal of Spectral Theory MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.00
自引率
0.00%
发文量
30
期刊介绍: The Journal of Spectral Theory is devoted to the publication of research articles that focus on spectral theory and its many areas of application. Articles of all lengths including surveys of parts of the subject are very welcome. The following list includes several aspects of spectral theory and also fields which feature substantial applications of (or to) spectral theory. Schrödinger operators, scattering theory and resonances; eigenvalues: perturbation theory, asymptotics and inequalities; quantum graphs, graph Laplacians; pseudo-differential operators and semi-classical analysis; random matrix theory; the Anderson model and other random media; non-self-adjoint matrices and operators, including Toeplitz operators; spectral geometry, including manifolds and automorphic forms; linear and nonlinear differential operators, especially those arising in geometry and physics; orthogonal polynomials; inverse problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信