{"title":"在风洞中对机翼进行各种迎角的测试","authors":"Ziqing Ma, E. Smeur, G. C. de Croon","doi":"10.1177/17568293221110931","DOIUrl":null,"url":null,"abstract":"Tailsitters have complex aerodynamics that make them hard to control throughout the entire flight envelope, especially at very high angle of attack (AoA) and reverse flow conditions. The development of controllers for these vehicles is hampered by the absence of publicly available data on forces and moments experienced in such conditions. In this paper, wind tunnel experiments are performed under different flap deflections and throttle settings at all possible AoA. The dataset is made open access. Our analysis of the data shows for the tested wing, flap deflections greatly affect the lift coefficient and stall occurs at ± 15 ∘ AoA as well as ± 160 ∘ . Wing-propeller interaction is studied by analyzing the propeller induced force in the axis orthogonal to the thrust axis, which is dependent on AoA, airspeed, flap deflections and thrust in a nonlinear and coupled manner. The influence of inverse flow on the wing is also discussed: The data confirm that when the airflow over the wing is reversed, flap deflections will affect the pitch moment in an opposite way compared to the non-reversed case, but this opposite effect can be avoided by increasing the throttle setting. The data show the exact relationship between flap deflections and forces in this condition. Moreover, it is found that the flap control effectiveness for a wing with or without spinning propellers is usually higher around zero degrees AoA than at ± 180 ∘ and it is more effective to change the flaps from 0 ∘ to ± 18.91 ∘ than from ± 18.91 ∘ to the respective ± 37.82 ∘ .","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Wind tunnel tests of a wing at all angles of attack\",\"authors\":\"Ziqing Ma, E. Smeur, G. C. de Croon\",\"doi\":\"10.1177/17568293221110931\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tailsitters have complex aerodynamics that make them hard to control throughout the entire flight envelope, especially at very high angle of attack (AoA) and reverse flow conditions. The development of controllers for these vehicles is hampered by the absence of publicly available data on forces and moments experienced in such conditions. In this paper, wind tunnel experiments are performed under different flap deflections and throttle settings at all possible AoA. The dataset is made open access. Our analysis of the data shows for the tested wing, flap deflections greatly affect the lift coefficient and stall occurs at ± 15 ∘ AoA as well as ± 160 ∘ . Wing-propeller interaction is studied by analyzing the propeller induced force in the axis orthogonal to the thrust axis, which is dependent on AoA, airspeed, flap deflections and thrust in a nonlinear and coupled manner. The influence of inverse flow on the wing is also discussed: The data confirm that when the airflow over the wing is reversed, flap deflections will affect the pitch moment in an opposite way compared to the non-reversed case, but this opposite effect can be avoided by increasing the throttle setting. The data show the exact relationship between flap deflections and forces in this condition. Moreover, it is found that the flap control effectiveness for a wing with or without spinning propellers is usually higher around zero degrees AoA than at ± 180 ∘ and it is more effective to change the flaps from 0 ∘ to ± 18.91 ∘ than from ± 18.91 ∘ to the respective ± 37.82 ∘ .\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/17568293221110931\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/17568293221110931","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Wind tunnel tests of a wing at all angles of attack
Tailsitters have complex aerodynamics that make them hard to control throughout the entire flight envelope, especially at very high angle of attack (AoA) and reverse flow conditions. The development of controllers for these vehicles is hampered by the absence of publicly available data on forces and moments experienced in such conditions. In this paper, wind tunnel experiments are performed under different flap deflections and throttle settings at all possible AoA. The dataset is made open access. Our analysis of the data shows for the tested wing, flap deflections greatly affect the lift coefficient and stall occurs at ± 15 ∘ AoA as well as ± 160 ∘ . Wing-propeller interaction is studied by analyzing the propeller induced force in the axis orthogonal to the thrust axis, which is dependent on AoA, airspeed, flap deflections and thrust in a nonlinear and coupled manner. The influence of inverse flow on the wing is also discussed: The data confirm that when the airflow over the wing is reversed, flap deflections will affect the pitch moment in an opposite way compared to the non-reversed case, but this opposite effect can be avoided by increasing the throttle setting. The data show the exact relationship between flap deflections and forces in this condition. Moreover, it is found that the flap control effectiveness for a wing with or without spinning propellers is usually higher around zero degrees AoA than at ± 180 ∘ and it is more effective to change the flaps from 0 ∘ to ± 18.91 ∘ than from ± 18.91 ∘ to the respective ± 37.82 ∘ .
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.