{"title":"基于多部分形状表示的三维点云非配对平移","authors":"Chih-Chia Li, I-Chen Lin","doi":"10.1145/3585508","DOIUrl":null,"url":null,"abstract":"Unpaired shape translation is an emerging task for intelligent shape modelling and editing. Recent methods for 3D shape transfer use single- or multi-scale latent codes but a single generator to generate the whole shape. The transferred shapes are prone to lose control of local details. To tackle the issue, we propose a parts-to-whole framework that employs multi-part shape representation to preserve structural details during translation. We decompose the whole shape feature into multiple part features in the latent space. These part features are then processed by individual generators respectively and transformed to point clouds. We constrain the local features of parts within the loss functions, which enable the model to generate more similar shape characteristics to the source input. Furthermore, we propose a part aggregation module that improves the performance when combining multiple point clusters to generate the final output. The experiments demonstrate that our multi-part shape representation can retain more shape characteristics compared to previous approaches.","PeriodicalId":74536,"journal":{"name":"Proceedings of the ACM on computer graphics and interactive techniques","volume":" ","pages":"1 - 20"},"PeriodicalIF":2.3000,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unpaired Translation of 3D Point Clouds with Multi-part Shape Representation\",\"authors\":\"Chih-Chia Li, I-Chen Lin\",\"doi\":\"10.1145/3585508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unpaired shape translation is an emerging task for intelligent shape modelling and editing. Recent methods for 3D shape transfer use single- or multi-scale latent codes but a single generator to generate the whole shape. The transferred shapes are prone to lose control of local details. To tackle the issue, we propose a parts-to-whole framework that employs multi-part shape representation to preserve structural details during translation. We decompose the whole shape feature into multiple part features in the latent space. These part features are then processed by individual generators respectively and transformed to point clouds. We constrain the local features of parts within the loss functions, which enable the model to generate more similar shape characteristics to the source input. Furthermore, we propose a part aggregation module that improves the performance when combining multiple point clusters to generate the final output. The experiments demonstrate that our multi-part shape representation can retain more shape characteristics compared to previous approaches.\",\"PeriodicalId\":74536,\"journal\":{\"name\":\"Proceedings of the ACM on computer graphics and interactive techniques\",\"volume\":\" \",\"pages\":\"1 - 20\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM on computer graphics and interactive techniques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3585508\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on computer graphics and interactive techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3585508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Unpaired Translation of 3D Point Clouds with Multi-part Shape Representation
Unpaired shape translation is an emerging task for intelligent shape modelling and editing. Recent methods for 3D shape transfer use single- or multi-scale latent codes but a single generator to generate the whole shape. The transferred shapes are prone to lose control of local details. To tackle the issue, we propose a parts-to-whole framework that employs multi-part shape representation to preserve structural details during translation. We decompose the whole shape feature into multiple part features in the latent space. These part features are then processed by individual generators respectively and transformed to point clouds. We constrain the local features of parts within the loss functions, which enable the model to generate more similar shape characteristics to the source input. Furthermore, we propose a part aggregation module that improves the performance when combining multiple point clusters to generate the final output. The experiments demonstrate that our multi-part shape representation can retain more shape characteristics compared to previous approaches.