{"title":"初等理想与强素数子模的推广","authors":"Afroozeh Jafari, M. Baziar, S. Safaeeyan","doi":"10.33044/revuma.1783","DOIUrl":null,"url":null,"abstract":"We present ∗-primary submodules, a generalization of the concept of primary submodules of an R-module. We show that every primary submodule of a Noetherian R-module is ∗-primary. Among other things, we show that over a commutative domain R, every torsion free R-module is ∗-primary. Furthermore, we show that in a cyclic R-module, primary and ∗-primary coincide. Moreover, we give a characterization of ∗-primary submodules for some finitely generated free R-modules.","PeriodicalId":54469,"journal":{"name":"Revista De La Union Matematica Argentina","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A generalization of primary ideals and strongly prime submodules\",\"authors\":\"Afroozeh Jafari, M. Baziar, S. Safaeeyan\",\"doi\":\"10.33044/revuma.1783\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present ∗-primary submodules, a generalization of the concept of primary submodules of an R-module. We show that every primary submodule of a Noetherian R-module is ∗-primary. Among other things, we show that over a commutative domain R, every torsion free R-module is ∗-primary. Furthermore, we show that in a cyclic R-module, primary and ∗-primary coincide. Moreover, we give a characterization of ∗-primary submodules for some finitely generated free R-modules.\",\"PeriodicalId\":54469,\"journal\":{\"name\":\"Revista De La Union Matematica Argentina\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista De La Union Matematica Argentina\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.33044/revuma.1783\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista De La Union Matematica Argentina","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.33044/revuma.1783","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
A generalization of primary ideals and strongly prime submodules
We present ∗-primary submodules, a generalization of the concept of primary submodules of an R-module. We show that every primary submodule of a Noetherian R-module is ∗-primary. Among other things, we show that over a commutative domain R, every torsion free R-module is ∗-primary. Furthermore, we show that in a cyclic R-module, primary and ∗-primary coincide. Moreover, we give a characterization of ∗-primary submodules for some finitely generated free R-modules.
期刊介绍:
Revista de la Unión Matemática Argentina is an open access journal, free of charge for both authors and readers. We publish original research articles in all areas of pure and applied mathematics.