初等理想与强素数子模的推广

IF 0.6 4区 数学 Q3 MATHEMATICS
Afroozeh Jafari, M. Baziar, S. Safaeeyan
{"title":"初等理想与强素数子模的推广","authors":"Afroozeh Jafari, M. Baziar, S. Safaeeyan","doi":"10.33044/revuma.1783","DOIUrl":null,"url":null,"abstract":"We present ∗-primary submodules, a generalization of the concept of primary submodules of an R-module. We show that every primary submodule of a Noetherian R-module is ∗-primary. Among other things, we show that over a commutative domain R, every torsion free R-module is ∗-primary. Furthermore, we show that in a cyclic R-module, primary and ∗-primary coincide. Moreover, we give a characterization of ∗-primary submodules for some finitely generated free R-modules.","PeriodicalId":54469,"journal":{"name":"Revista De La Union Matematica Argentina","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A generalization of primary ideals and strongly prime submodules\",\"authors\":\"Afroozeh Jafari, M. Baziar, S. Safaeeyan\",\"doi\":\"10.33044/revuma.1783\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present ∗-primary submodules, a generalization of the concept of primary submodules of an R-module. We show that every primary submodule of a Noetherian R-module is ∗-primary. Among other things, we show that over a commutative domain R, every torsion free R-module is ∗-primary. Furthermore, we show that in a cyclic R-module, primary and ∗-primary coincide. Moreover, we give a characterization of ∗-primary submodules for some finitely generated free R-modules.\",\"PeriodicalId\":54469,\"journal\":{\"name\":\"Revista De La Union Matematica Argentina\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista De La Union Matematica Argentina\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.33044/revuma.1783\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista De La Union Matematica Argentina","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.33044/revuma.1783","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

提出了r模的主子模概念的推广(* -主子模)。证明了noether r模的每一个主子模都是* -主模。除此之外,我们证明了在交换域R上,每个无扭转的R模是* -初级的。进一步证明了在一个循环r模中,初生和* -初生是重合的。此外,我们还给出了一些有限生成自由r模的* -主子模的一个刻划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A generalization of primary ideals and strongly prime submodules
We present ∗-primary submodules, a generalization of the concept of primary submodules of an R-module. We show that every primary submodule of a Noetherian R-module is ∗-primary. Among other things, we show that over a commutative domain R, every torsion free R-module is ∗-primary. Furthermore, we show that in a cyclic R-module, primary and ∗-primary coincide. Moreover, we give a characterization of ∗-primary submodules for some finitely generated free R-modules.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Revista De La Union Matematica Argentina
Revista De La Union Matematica Argentina MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
0.70
自引率
0.00%
发文量
39
审稿时长
>12 weeks
期刊介绍: Revista de la Unión Matemática Argentina is an open access journal, free of charge for both authors and readers. We publish original research articles in all areas of pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信