基于改进的多尺度符号动态熵和模糊广义学习的铁路转辙机故障快速诊断

IF 2.7 4区 工程技术 Q2 TRANSPORTATION SCIENCE & TECHNOLOGY
Junqi Liu, Tao Wen, Guo Xie, Yuan Cao
{"title":"基于改进的多尺度符号动态熵和模糊广义学习的铁路转辙机故障快速诊断","authors":"Junqi Liu, Tao Wen, Guo Xie, Yuan Cao","doi":"10.1093/tse/tdac065","DOIUrl":null,"url":null,"abstract":"\n Railway Point Machines (RPMs) condition monitoring has attracted engineers’ attention due to safe train operation and accident prevention. To realize the fast and accurate fault diagnosis of RPMs, this paper proposes a method based on entropy measurement and Broad Learning System (BLS). Firstly, the Modified Multi-scale Symbolic Dynamic Entropy (MMSDE) module extracts dynamic characteristics from the collected acoustic signals as entropy features. Then the Fuzzy BLS takes the above entropy features as input to complete model training. Fuzzy BLS introduces Takagi-Sugeno fuzzy system into BLS, which improves the model’s classification performance while considering computational speed. Experimental results indicate that the proposed method significantly reduces the running time while maintaining high accuracy.","PeriodicalId":52804,"journal":{"name":"Transportation Safety and Environment","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2022-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Modified Multi-Scale Symbolic Dynamic Entropy and Fuzzy Broad Learning-Based fast fault diagnosis of Railway Point Machines\",\"authors\":\"Junqi Liu, Tao Wen, Guo Xie, Yuan Cao\",\"doi\":\"10.1093/tse/tdac065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Railway Point Machines (RPMs) condition monitoring has attracted engineers’ attention due to safe train operation and accident prevention. To realize the fast and accurate fault diagnosis of RPMs, this paper proposes a method based on entropy measurement and Broad Learning System (BLS). Firstly, the Modified Multi-scale Symbolic Dynamic Entropy (MMSDE) module extracts dynamic characteristics from the collected acoustic signals as entropy features. Then the Fuzzy BLS takes the above entropy features as input to complete model training. Fuzzy BLS introduces Takagi-Sugeno fuzzy system into BLS, which improves the model’s classification performance while considering computational speed. Experimental results indicate that the proposed method significantly reduces the running time while maintaining high accuracy.\",\"PeriodicalId\":52804,\"journal\":{\"name\":\"Transportation Safety and Environment\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2022-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation Safety and Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/tse/tdac065\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TRANSPORTATION SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Safety and Environment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/tse/tdac065","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

铁路自动售票机的状态监测对列车的安全运行和事故预防有着重要的意义。为了实现快速、准确的rpm故障诊断,本文提出了一种基于熵测度和广义学习系统(BLS)的方法。首先,修正多尺度符号动态熵(MMSDE)模块从采集到的声信号中提取动态特征作为熵特征;然后,模糊BLS将上述熵特征作为输入,完成模型训练。模糊BLS将Takagi-Sugeno模糊系统引入到BLS中,在考虑计算速度的同时提高了模型的分类性能。实验结果表明,该方法在保持较高精度的同时,显著缩短了运行时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modified Multi-Scale Symbolic Dynamic Entropy and Fuzzy Broad Learning-Based fast fault diagnosis of Railway Point Machines
Railway Point Machines (RPMs) condition monitoring has attracted engineers’ attention due to safe train operation and accident prevention. To realize the fast and accurate fault diagnosis of RPMs, this paper proposes a method based on entropy measurement and Broad Learning System (BLS). Firstly, the Modified Multi-scale Symbolic Dynamic Entropy (MMSDE) module extracts dynamic characteristics from the collected acoustic signals as entropy features. Then the Fuzzy BLS takes the above entropy features as input to complete model training. Fuzzy BLS introduces Takagi-Sugeno fuzzy system into BLS, which improves the model’s classification performance while considering computational speed. Experimental results indicate that the proposed method significantly reduces the running time while maintaining high accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Transportation Safety and Environment
Transportation Safety and Environment TRANSPORTATION SCIENCE & TECHNOLOGY-
CiteScore
3.90
自引率
13.60%
发文量
32
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信