离散时间AK模型中线性决策规则的最优性

IF 0.3 4区 经济学 Q4 ECONOMICS
Myungkyu Shim
{"title":"离散时间AK模型中线性决策规则的最优性","authors":"Myungkyu Shim","doi":"10.1515/bejte-2021-0061","DOIUrl":null,"url":null,"abstract":"Abstract Surprisingly, formal proof on the optimality of a linear decision rule in the discrete time AK model with a CRRA utility function has not been established in the growth literature while that in the continuous time counterpart is well-established. This note fills such a gap: I provide a formal proof that consumption being linearly related to investment is a sufficient and necessary condition for Pareto optimality in the discrete time AK model.","PeriodicalId":44773,"journal":{"name":"B E Journal of Theoretical Economics","volume":"23 1","pages":"519 - 527"},"PeriodicalIF":0.3000,"publicationDate":"2021-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimality of a Linear Decision Rule in Discrete Time AK Model\",\"authors\":\"Myungkyu Shim\",\"doi\":\"10.1515/bejte-2021-0061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Surprisingly, formal proof on the optimality of a linear decision rule in the discrete time AK model with a CRRA utility function has not been established in the growth literature while that in the continuous time counterpart is well-established. This note fills such a gap: I provide a formal proof that consumption being linearly related to investment is a sufficient and necessary condition for Pareto optimality in the discrete time AK model.\",\"PeriodicalId\":44773,\"journal\":{\"name\":\"B E Journal of Theoretical Economics\",\"volume\":\"23 1\",\"pages\":\"519 - 527\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2021-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"B E Journal of Theoretical Economics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1515/bejte-2021-0061\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"B E Journal of Theoretical Economics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1515/bejte-2021-0061","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

令人惊讶的是,在增长文献中尚未建立具有CRRA效用函数的离散时间AK模型中线性决策规则最优性的形式化证明,而在连续时间对应模型中则建立了最优性的形式化证明。这篇笔记填补了这样一个空白:我提供了一个正式的证明,证明消费与投资线性相关是离散时间AK模型中帕累托最优的充要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimality of a Linear Decision Rule in Discrete Time AK Model
Abstract Surprisingly, formal proof on the optimality of a linear decision rule in the discrete time AK model with a CRRA utility function has not been established in the growth literature while that in the continuous time counterpart is well-established. This note fills such a gap: I provide a formal proof that consumption being linearly related to investment is a sufficient and necessary condition for Pareto optimality in the discrete time AK model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
25.00%
发文量
25
期刊介绍: We welcome submissions in all areas of economic theory, both applied theory and \"pure\" theory. Contributions can be either innovations in economic theory or rigorous new applications of existing theory. Pure theory papers include, but are by no means limited to, those in behavioral economics and decision theory, game theory, general equilibrium theory, and the theory of economic mechanisms. Applications could encompass, but are by no means limited to, contract theory, public finance, financial economics, industrial organization, law and economics, and labor economics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信