非齐次谱的动力学方法

Pub Date : 2022-04-25 DOI:10.4064/fm191-5-2023
Jun Yu Li, Xianjuan Liang
{"title":"非齐次谱的动力学方法","authors":"Jun Yu Li, Xianjuan Liang","doi":"10.4064/fm191-5-2023","DOIUrl":null,"url":null,"abstract":"Let $\\alpha>0$ and $0<\\gamma<1$. Define $g_{\\alpha,\\gamma}\\colon \\mathbb{N}\\to\\mathbb{N}_0$ by $g_{\\alpha,\\gamma}(n)=\\lfloor n\\alpha +\\gamma\\rfloor$, where $\\lfloor x \\rfloor$ is the largest integer less than or equal to $x$. The set $g_{\\alpha,\\gamma}(\\mathbb{N})=\\{g_{\\alpha,\\gamma}(n)\\colon n\\in\\mathbb{N}\\}$ is called the $\\gamma$-nonhomogeneous spectrum of $\\alpha$. By extension, the functions $g_{\\alpha,\\gamma}$ are referred to as spectra. In 1996, Bergelson, Hindman and Kra showed that the functions $g_{\\alpha,\\gamma}$ preserve some largeness of subsets of $\\mathbb{N}$, that is, if a subset $A$ of $\\mathbb{N}$ is an IP-set, a central set, an IP$^*$-set, or a central$^*$-set, then $g_{\\alpha,\\gamma}(A)$ is the corresponding object for all $\\alpha>0$ and $0<\\gamma<1$. In 2012, Hindman and Johnson extended this result to include several other notions of largeness: C-sets, J-sets, strongly central sets, and piecewise syndetic sets. We adopt a dynamical approach to this issue and build a correspondence between the preservation of spectra and the lift property of suspension. As an application, we give a unified proof of some known results and also obtain some new results.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A dynamical approach to nonhomogeneous spectra\",\"authors\":\"Jun Yu Li, Xianjuan Liang\",\"doi\":\"10.4064/fm191-5-2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\alpha>0$ and $0<\\\\gamma<1$. Define $g_{\\\\alpha,\\\\gamma}\\\\colon \\\\mathbb{N}\\\\to\\\\mathbb{N}_0$ by $g_{\\\\alpha,\\\\gamma}(n)=\\\\lfloor n\\\\alpha +\\\\gamma\\\\rfloor$, where $\\\\lfloor x \\\\rfloor$ is the largest integer less than or equal to $x$. The set $g_{\\\\alpha,\\\\gamma}(\\\\mathbb{N})=\\\\{g_{\\\\alpha,\\\\gamma}(n)\\\\colon n\\\\in\\\\mathbb{N}\\\\}$ is called the $\\\\gamma$-nonhomogeneous spectrum of $\\\\alpha$. By extension, the functions $g_{\\\\alpha,\\\\gamma}$ are referred to as spectra. In 1996, Bergelson, Hindman and Kra showed that the functions $g_{\\\\alpha,\\\\gamma}$ preserve some largeness of subsets of $\\\\mathbb{N}$, that is, if a subset $A$ of $\\\\mathbb{N}$ is an IP-set, a central set, an IP$^*$-set, or a central$^*$-set, then $g_{\\\\alpha,\\\\gamma}(A)$ is the corresponding object for all $\\\\alpha>0$ and $0<\\\\gamma<1$. In 2012, Hindman and Johnson extended this result to include several other notions of largeness: C-sets, J-sets, strongly central sets, and piecewise syndetic sets. We adopt a dynamical approach to this issue and build a correspondence between the preservation of spectra and the lift property of suspension. As an application, we give a unified proof of some known results and also obtain some new results.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/fm191-5-2023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/fm191-5-2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让$\alpha>0$$00$和$0<\gamma<1$。2012年,Hindman和Johnson扩展了这一结果,使其包含了其他几个关于大的概念:c集、j集、强中心集和分段合成集。我们采用动力学方法来解决这一问题,并建立了谱保持性与悬架升力性质之间的对应关系。作为应用,我们给出了一些已知结果的统一证明,也得到了一些新的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A dynamical approach to nonhomogeneous spectra
Let $\alpha>0$ and $0<\gamma<1$. Define $g_{\alpha,\gamma}\colon \mathbb{N}\to\mathbb{N}_0$ by $g_{\alpha,\gamma}(n)=\lfloor n\alpha +\gamma\rfloor$, where $\lfloor x \rfloor$ is the largest integer less than or equal to $x$. The set $g_{\alpha,\gamma}(\mathbb{N})=\{g_{\alpha,\gamma}(n)\colon n\in\mathbb{N}\}$ is called the $\gamma$-nonhomogeneous spectrum of $\alpha$. By extension, the functions $g_{\alpha,\gamma}$ are referred to as spectra. In 1996, Bergelson, Hindman and Kra showed that the functions $g_{\alpha,\gamma}$ preserve some largeness of subsets of $\mathbb{N}$, that is, if a subset $A$ of $\mathbb{N}$ is an IP-set, a central set, an IP$^*$-set, or a central$^*$-set, then $g_{\alpha,\gamma}(A)$ is the corresponding object for all $\alpha>0$ and $0<\gamma<1$. In 2012, Hindman and Johnson extended this result to include several other notions of largeness: C-sets, J-sets, strongly central sets, and piecewise syndetic sets. We adopt a dynamical approach to this issue and build a correspondence between the preservation of spectra and the lift property of suspension. As an application, we give a unified proof of some known results and also obtain some new results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信