使用RVM、GPR和MPMR确定岩石碎片的大小

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Pradeep Thangavel, P. Samui
{"title":"使用RVM、GPR和MPMR确定岩石碎片的大小","authors":"Pradeep Thangavel, P. Samui","doi":"10.28927/sr.2022.008122","DOIUrl":null,"url":null,"abstract":"For predicting the size of rock fragments during drilling and blasting operations, this article uses GPR, RVM, and MPMR. The current analysis makes use of a blast data set generated in a prior investigation. In this study, a portion of the blast data was utilized to train a model to determine the mean particle size arising from blast fragmentation for each of the similarity groups generated. The particle size was modeled as a function of seven different variables. The dataset contains information about the bench height and drilled burden ratio (H / B), spacing to burden ratio (S / B), burden to hole diameter ratio (B / D), stemming to burden ratio (T / B), powder factor (Pf ), modulus of elasticity (E), and in-situ block size (XB) are the input and output is X50. By comparing forecasts with actual mean particle size values and predictions based on one of the most widely used fragmentation estimation techniques in the blasted literature, the capacity of the generated models may be established. The statistical parameters, actual vs predicted curve, Taylor diagram, error bar, and developed discrepancy ratio are used to analysis the performance of models. A comparative study has been carried out between the developed RVM, GPR, and MPMR. The results show the developed models have the capability for prediction of X50. From these comparisons, the MPMR has the highest value with a high degree of precision and robustness in the size of rock fragments X50.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Determination of the size of rock fragments using RVM, GPR, and MPMR\",\"authors\":\"Pradeep Thangavel, P. Samui\",\"doi\":\"10.28927/sr.2022.008122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For predicting the size of rock fragments during drilling and blasting operations, this article uses GPR, RVM, and MPMR. The current analysis makes use of a blast data set generated in a prior investigation. In this study, a portion of the blast data was utilized to train a model to determine the mean particle size arising from blast fragmentation for each of the similarity groups generated. The particle size was modeled as a function of seven different variables. The dataset contains information about the bench height and drilled burden ratio (H / B), spacing to burden ratio (S / B), burden to hole diameter ratio (B / D), stemming to burden ratio (T / B), powder factor (Pf ), modulus of elasticity (E), and in-situ block size (XB) are the input and output is X50. By comparing forecasts with actual mean particle size values and predictions based on one of the most widely used fragmentation estimation techniques in the blasted literature, the capacity of the generated models may be established. The statistical parameters, actual vs predicted curve, Taylor diagram, error bar, and developed discrepancy ratio are used to analysis the performance of models. A comparative study has been carried out between the developed RVM, GPR, and MPMR. The results show the developed models have the capability for prediction of X50. From these comparisons, the MPMR has the highest value with a high degree of precision and robustness in the size of rock fragments X50.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.28927/sr.2022.008122\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28927/sr.2022.008122","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

为了预测钻孔和爆破过程中岩石碎片的大小,本文使用了GPR、RVM和MPMR。目前的分析利用了先前调查中生成的爆破数据集。在这项研究中,一部分爆破数据被用来训练一个模型,以确定产生的每个相似组的爆破碎片产生的平均粒径。颗粒大小被建模为七个不同变量的函数。该数据集包含有关台阶高度和钻孔负载比(H/B)、间距负载比(S/B)、负载孔径比(B/D)、堵塞负载比(T/B)、粉末系数(Pf)、弹性模量(E)和现场块体尺寸(XB)的信息。输入和输出为X50。通过将预测与实际平均粒径值以及基于爆破文献中最广泛使用的碎片估计技术之一的预测进行比较,可以建立生成的模型的容量。统计参数、实际与预测曲线、泰勒图、误差条和发展的差异率用于分析模型的性能。对所开发的RVM、GPR和MPMR进行了比较研究。结果表明,所建立的模型具有预测X50的能力。根据这些比较,MPMR在岩石碎片X50的尺寸方面具有最高的精度和稳健性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Determination of the size of rock fragments using RVM, GPR, and MPMR
For predicting the size of rock fragments during drilling and blasting operations, this article uses GPR, RVM, and MPMR. The current analysis makes use of a blast data set generated in a prior investigation. In this study, a portion of the blast data was utilized to train a model to determine the mean particle size arising from blast fragmentation for each of the similarity groups generated. The particle size was modeled as a function of seven different variables. The dataset contains information about the bench height and drilled burden ratio (H / B), spacing to burden ratio (S / B), burden to hole diameter ratio (B / D), stemming to burden ratio (T / B), powder factor (Pf ), modulus of elasticity (E), and in-situ block size (XB) are the input and output is X50. By comparing forecasts with actual mean particle size values and predictions based on one of the most widely used fragmentation estimation techniques in the blasted literature, the capacity of the generated models may be established. The statistical parameters, actual vs predicted curve, Taylor diagram, error bar, and developed discrepancy ratio are used to analysis the performance of models. A comparative study has been carried out between the developed RVM, GPR, and MPMR. The results show the developed models have the capability for prediction of X50. From these comparisons, the MPMR has the highest value with a high degree of precision and robustness in the size of rock fragments X50.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信