空间填充图的加权高斯曲率导数

Q2 Mathematics
A. Akopyan, H. Edelsbrunner
{"title":"空间填充图的加权高斯曲率导数","authors":"A. Akopyan, H. Edelsbrunner","doi":"10.1515/cmb-2020-0101","DOIUrl":null,"url":null,"abstract":"Abstract The morphometric approach [11, 14] writes the solvation free energy as a linear combination of weighted versions of the volume, area, mean curvature, and Gaussian curvature of the space-filling diagram. We give a formula for the derivative of the weighted Gaussian curvature. Together with the derivatives of the weighted volume in [7], the weighted area in [4], and the weighted mean curvature in [1], this yields the derivative of the morphometric expression of solvation free energy.","PeriodicalId":34018,"journal":{"name":"Computational and Mathematical Biophysics","volume":"8 1","pages":"74 - 88"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/cmb-2020-0101","citationCount":"4","resultStr":"{\"title\":\"The Weighted Gaussian Curvature Derivative of a Space-Filling Diagram\",\"authors\":\"A. Akopyan, H. Edelsbrunner\",\"doi\":\"10.1515/cmb-2020-0101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The morphometric approach [11, 14] writes the solvation free energy as a linear combination of weighted versions of the volume, area, mean curvature, and Gaussian curvature of the space-filling diagram. We give a formula for the derivative of the weighted Gaussian curvature. Together with the derivatives of the weighted volume in [7], the weighted area in [4], and the weighted mean curvature in [1], this yields the derivative of the morphometric expression of solvation free energy.\",\"PeriodicalId\":34018,\"journal\":{\"name\":\"Computational and Mathematical Biophysics\",\"volume\":\"8 1\",\"pages\":\"74 - 88\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/cmb-2020-0101\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and Mathematical Biophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/cmb-2020-0101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Biophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cmb-2020-0101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 4

摘要

摘要形态计量方法[11,14]将溶剂化自由能写成空间填充图的体积、面积、平均曲率和高斯曲率的加权版本的线性组合。我们给出了加权高斯曲率导数的一个公式。与[7]中的加权体积、[4]中的加权面积和[1]中的加权平均曲率的导数一起,这产生了溶剂化自由能的形态计量表达式的导数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Weighted Gaussian Curvature Derivative of a Space-Filling Diagram
Abstract The morphometric approach [11, 14] writes the solvation free energy as a linear combination of weighted versions of the volume, area, mean curvature, and Gaussian curvature of the space-filling diagram. We give a formula for the derivative of the weighted Gaussian curvature. Together with the derivatives of the weighted volume in [7], the weighted area in [4], and the weighted mean curvature in [1], this yields the derivative of the morphometric expression of solvation free energy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational and Mathematical Biophysics
Computational and Mathematical Biophysics Mathematics-Mathematical Physics
CiteScore
2.50
自引率
0.00%
发文量
8
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信