通过平面网络氧化石墨烯/聚酯杂化热界面材料热管理应用

IF 2.7 3区 工程技术 Q2 ENGINEERING, MECHANICAL
Junaid Khan, M. Jaafar
{"title":"通过平面网络氧化石墨烯/聚酯杂化热界面材料热管理应用","authors":"Junaid Khan, M. Jaafar","doi":"10.1080/15567265.2022.2125857","DOIUrl":null,"url":null,"abstract":"ABSTRACT The role of electronic devices in our lives is increasing rapidly, with more research focusing on miniaturization, creating more demand for thermal interface materials (TIM). Grease-based TIM presently available have good thermal conductivity values, but issues such as contamination, pump-out, and an additional curing step are observed. Fibrous textile substrates are soft and flexible, making them suitable for occupying the asperities between the heat sink and heat-producing devices. However, they are insulating in nature and can be made conductive using conductive fillers such as graphene oxide (GO). In this article, a networked through-plane thermally conductive TIM using the cutting waste of polyester and GO was fabricated. The methodology involved functionalizing the PET substrate and studying its interaction with GO. A networked GO/PET, (N-GOPET) hybrid TIM was fabricated from waste PET with good through-plane heat conduction performance, softness, and cuttability as a promising replacement for grease-based TIM.","PeriodicalId":49784,"journal":{"name":"Nanoscale and Microscale Thermophysical Engineering","volume":"26 1","pages":"188 - 197"},"PeriodicalIF":2.7000,"publicationDate":"2022-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Through Plane Networked Graphene Oxide/Polyester Hybrid Thermal Interface Material for Heat Management Applications\",\"authors\":\"Junaid Khan, M. Jaafar\",\"doi\":\"10.1080/15567265.2022.2125857\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The role of electronic devices in our lives is increasing rapidly, with more research focusing on miniaturization, creating more demand for thermal interface materials (TIM). Grease-based TIM presently available have good thermal conductivity values, but issues such as contamination, pump-out, and an additional curing step are observed. Fibrous textile substrates are soft and flexible, making them suitable for occupying the asperities between the heat sink and heat-producing devices. However, they are insulating in nature and can be made conductive using conductive fillers such as graphene oxide (GO). In this article, a networked through-plane thermally conductive TIM using the cutting waste of polyester and GO was fabricated. The methodology involved functionalizing the PET substrate and studying its interaction with GO. A networked GO/PET, (N-GOPET) hybrid TIM was fabricated from waste PET with good through-plane heat conduction performance, softness, and cuttability as a promising replacement for grease-based TIM.\",\"PeriodicalId\":49784,\"journal\":{\"name\":\"Nanoscale and Microscale Thermophysical Engineering\",\"volume\":\"26 1\",\"pages\":\"188 - 197\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2022-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale and Microscale Thermophysical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/15567265.2022.2125857\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale and Microscale Thermophysical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/15567265.2022.2125857","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 2

摘要

电子器件在我们生活中的作用正在迅速增加,越来越多的研究关注于小型化,对热界面材料(TIM)产生了更多的需求。目前可用的润滑脂基TIM具有良好的导热性值,但存在污染、泵出和额外固化步骤等问题。纤维织物基材柔软且有弹性,使其适合于占据散热器和产热装置之间的凸起。然而,它们本质上是绝缘的,可以使用导电填料(如氧化石墨烯(GO))使其导电。本文利用聚酯和氧化石墨烯的切削废渣制备了网络化的通平面导热TIM。方法包括功能化PET衬底并研究其与氧化石墨烯的相互作用。以废PET为原料制备了一种网络化的GO/PET (N-GOPET)杂化TIM,具有良好的通平面导热性能、柔软性和可切削性,有望成为润滑脂基TIM的替代品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Through Plane Networked Graphene Oxide/Polyester Hybrid Thermal Interface Material for Heat Management Applications
ABSTRACT The role of electronic devices in our lives is increasing rapidly, with more research focusing on miniaturization, creating more demand for thermal interface materials (TIM). Grease-based TIM presently available have good thermal conductivity values, but issues such as contamination, pump-out, and an additional curing step are observed. Fibrous textile substrates are soft and flexible, making them suitable for occupying the asperities between the heat sink and heat-producing devices. However, they are insulating in nature and can be made conductive using conductive fillers such as graphene oxide (GO). In this article, a networked through-plane thermally conductive TIM using the cutting waste of polyester and GO was fabricated. The methodology involved functionalizing the PET substrate and studying its interaction with GO. A networked GO/PET, (N-GOPET) hybrid TIM was fabricated from waste PET with good through-plane heat conduction performance, softness, and cuttability as a promising replacement for grease-based TIM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanoscale and Microscale Thermophysical Engineering
Nanoscale and Microscale Thermophysical Engineering 工程技术-材料科学:表征与测试
CiteScore
5.90
自引率
2.40%
发文量
12
审稿时长
3.3 months
期刊介绍: Nanoscale and Microscale Thermophysical Engineering is a journal covering the basic science and engineering of nanoscale and microscale energy and mass transport, conversion, and storage processes. In addition, the journal addresses the uses of these principles for device and system applications in the fields of energy, environment, information, medicine, and transportation. The journal publishes both original research articles and reviews of historical accounts, latest progresses, and future directions in this rapidly advancing field. Papers deal with such topics as: transport and interactions of electrons, phonons, photons, and spins in solids, interfacial energy transport and phase change processes, microscale and nanoscale fluid and mass transport and chemical reaction, molecular-level energy transport, storage, conversion, reaction, and phase transition, near field thermal radiation and plasmonic effects, ultrafast and high spatial resolution measurements, multi length and time scale modeling and computations, processing of nanostructured materials, including composites, micro and nanoscale manufacturing, energy conversion and storage devices and systems, thermal management devices and systems, microfluidic and nanofluidic devices and systems, molecular analysis devices and systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信