CVaR约束下重尾混合模型的拟合

IF 0.6 Q4 STATISTICS & PROBABILITY
Giorgi Pertaia, S. Uryasev
{"title":"CVaR约束下重尾混合模型的拟合","authors":"Giorgi Pertaia, S. Uryasev","doi":"10.1515/demo-2019-0019","DOIUrl":null,"url":null,"abstract":"Abstract Standard methods of fitting finite mixture models take into account the majority of observations in the center of the distribution. This paper considers the case where the decision maker wants to make sure that the tail of the fitted distribution is at least as heavy as the tail of the empirical distribution. For instance, in nuclear engineering, where probability of exceedance (POE) needs to be estimated, it is important to fit correctly tails of the distributions. The goal of this paper is to supplement the standard methodology and to assure an appropriate heaviness of the fitted tails. We consider a new Conditional Value-at-Risk (CVaR) distance between distributions, that is a convex function with respect to weights of the mixture. We have conducted a case study demonstrating e˚ciency of the approach. Weights of mixture are found by minimizing CVaR distance between the mixture and the empirical distribution. We have suggested convex constraints on weights, assuring that the tail of the mixture is as heavy as the tail of empirical distribution.","PeriodicalId":43690,"journal":{"name":"Dependence Modeling","volume":"7 1","pages":"365 - 374"},"PeriodicalIF":0.6000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/demo-2019-0019","citationCount":"0","resultStr":"{\"title\":\"Fitting heavy-tailed mixture models with CVaR constraints\",\"authors\":\"Giorgi Pertaia, S. Uryasev\",\"doi\":\"10.1515/demo-2019-0019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Standard methods of fitting finite mixture models take into account the majority of observations in the center of the distribution. This paper considers the case where the decision maker wants to make sure that the tail of the fitted distribution is at least as heavy as the tail of the empirical distribution. For instance, in nuclear engineering, where probability of exceedance (POE) needs to be estimated, it is important to fit correctly tails of the distributions. The goal of this paper is to supplement the standard methodology and to assure an appropriate heaviness of the fitted tails. We consider a new Conditional Value-at-Risk (CVaR) distance between distributions, that is a convex function with respect to weights of the mixture. We have conducted a case study demonstrating e˚ciency of the approach. Weights of mixture are found by minimizing CVaR distance between the mixture and the empirical distribution. We have suggested convex constraints on weights, assuring that the tail of the mixture is as heavy as the tail of empirical distribution.\",\"PeriodicalId\":43690,\"journal\":{\"name\":\"Dependence Modeling\",\"volume\":\"7 1\",\"pages\":\"365 - 374\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/demo-2019-0019\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dependence Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/demo-2019-0019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dependence Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/demo-2019-0019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

摘要拟合有限混合模型的标准方法考虑了分布中心的大多数观测结果。本文考虑了决策者希望确保拟合分布的尾部至少与经验分布的尾部一样重的情况。例如,在核工程中,需要估计超越概率(POE),正确拟合分布的尾部是很重要的。本文的目的是补充标准方法,并确保合适的尾部重量。我们考虑了一个新的分布之间的条件风险值(CVaR)距离,它是一个关于混合物权重的凸函数。我们进行了一个案例研究,证明了该方法的有效性。通过最小化混合物和经验分布之间的CVaR距离来找到混合物的重量。我们提出了对权重的凸约束,以确保混合物的尾部与经验分布的尾部一样重。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fitting heavy-tailed mixture models with CVaR constraints
Abstract Standard methods of fitting finite mixture models take into account the majority of observations in the center of the distribution. This paper considers the case where the decision maker wants to make sure that the tail of the fitted distribution is at least as heavy as the tail of the empirical distribution. For instance, in nuclear engineering, where probability of exceedance (POE) needs to be estimated, it is important to fit correctly tails of the distributions. The goal of this paper is to supplement the standard methodology and to assure an appropriate heaviness of the fitted tails. We consider a new Conditional Value-at-Risk (CVaR) distance between distributions, that is a convex function with respect to weights of the mixture. We have conducted a case study demonstrating e˚ciency of the approach. Weights of mixture are found by minimizing CVaR distance between the mixture and the empirical distribution. We have suggested convex constraints on weights, assuring that the tail of the mixture is as heavy as the tail of empirical distribution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Dependence Modeling
Dependence Modeling STATISTICS & PROBABILITY-
CiteScore
1.00
自引率
0.00%
发文量
18
审稿时长
12 weeks
期刊介绍: The journal Dependence Modeling aims at providing a medium for exchanging results and ideas in the area of multivariate dependence modeling. It is an open access fully peer-reviewed journal providing the readers with free, instant, and permanent access to all content worldwide. Dependence Modeling is listed by Web of Science (Emerging Sources Citation Index), Scopus, MathSciNet and Zentralblatt Math. The journal presents different types of articles: -"Research Articles" on fundamental theoretical aspects, as well as on significant applications in science, engineering, economics, finance, insurance and other fields. -"Review Articles" which present the existing literature on the specific topic from new perspectives. -"Interview articles" limited to two papers per year, covering interviews with milestone personalities in the field of Dependence Modeling. The journal topics include (but are not limited to):  -Copula methods -Multivariate distributions -Estimation and goodness-of-fit tests -Measures of association -Quantitative risk management -Risk measures and stochastic orders -Time series -Environmental sciences -Computational methods and software -Extreme-value theory -Limit laws -Mass Transportations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信