{"title":"对当地应用的全球水文参数估计:强迫和集水区特性的影响","authors":"Jasper Schalla, A. Hartmann, T. Abraham, Y. Liu","doi":"10.2166/nh.2023.086","DOIUrl":null,"url":null,"abstract":"\n Data scarcity in many areas around the world represents a major problem for hydrological model calibrations. Global parameter estimates and global forcing can provide possibilities to access hydrological responses in ungauged regions. In this study, we applied HBV global parameter estimates considering uncertainty in the Upper Neckar and Upper Danube catchments, Germany to answer what are the influencing factors and how good are their local applications. We tested simulations with precipitation in spatial resolutions from 0.05° to 0.2° and with local/global sources. Results show that the general performance is acceptable to good (Kling-Gupta efficiency, KGE: 0.51–0.79) in both catchments using local or global precipitation. The influence of spatial resolutions is insignificant while using local precipitation slightly increases performance in both catchments. Catchment properties such as complex topography and special karst subsurface may lead to a deterioration of performance by 0.2 of median KGE in the Upper Danube compared with the Upper Neckar catchment. The median correlation coefficient, runoff ratio and relative error suggest that using global parameter estimates can reproduce seasonality and long-term water balance in our studied region. Our study highlights the potential of using global parameter estimates and global forcing in ungauged areas.","PeriodicalId":55040,"journal":{"name":"Hydrology Research","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2023-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Global hydrological parameter estimates to local applications: influence of forcing and catchment properties\",\"authors\":\"Jasper Schalla, A. Hartmann, T. Abraham, Y. Liu\",\"doi\":\"10.2166/nh.2023.086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Data scarcity in many areas around the world represents a major problem for hydrological model calibrations. Global parameter estimates and global forcing can provide possibilities to access hydrological responses in ungauged regions. In this study, we applied HBV global parameter estimates considering uncertainty in the Upper Neckar and Upper Danube catchments, Germany to answer what are the influencing factors and how good are their local applications. We tested simulations with precipitation in spatial resolutions from 0.05° to 0.2° and with local/global sources. Results show that the general performance is acceptable to good (Kling-Gupta efficiency, KGE: 0.51–0.79) in both catchments using local or global precipitation. The influence of spatial resolutions is insignificant while using local precipitation slightly increases performance in both catchments. Catchment properties such as complex topography and special karst subsurface may lead to a deterioration of performance by 0.2 of median KGE in the Upper Danube compared with the Upper Neckar catchment. The median correlation coefficient, runoff ratio and relative error suggest that using global parameter estimates can reproduce seasonality and long-term water balance in our studied region. Our study highlights the potential of using global parameter estimates and global forcing in ungauged areas.\",\"PeriodicalId\":55040,\"journal\":{\"name\":\"Hydrology Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hydrology Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.2166/nh.2023.086\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrology Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/nh.2023.086","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
Global hydrological parameter estimates to local applications: influence of forcing and catchment properties
Data scarcity in many areas around the world represents a major problem for hydrological model calibrations. Global parameter estimates and global forcing can provide possibilities to access hydrological responses in ungauged regions. In this study, we applied HBV global parameter estimates considering uncertainty in the Upper Neckar and Upper Danube catchments, Germany to answer what are the influencing factors and how good are their local applications. We tested simulations with precipitation in spatial resolutions from 0.05° to 0.2° and with local/global sources. Results show that the general performance is acceptable to good (Kling-Gupta efficiency, KGE: 0.51–0.79) in both catchments using local or global precipitation. The influence of spatial resolutions is insignificant while using local precipitation slightly increases performance in both catchments. Catchment properties such as complex topography and special karst subsurface may lead to a deterioration of performance by 0.2 of median KGE in the Upper Danube compared with the Upper Neckar catchment. The median correlation coefficient, runoff ratio and relative error suggest that using global parameter estimates can reproduce seasonality and long-term water balance in our studied region. Our study highlights the potential of using global parameter estimates and global forcing in ungauged areas.
期刊介绍:
Hydrology Research provides international coverage on all aspects of hydrology in its widest sense, and welcomes the submission of papers from across the subject. While emphasis is placed on studies of the hydrological cycle, the Journal also covers the physics and chemistry of water. Hydrology Research is intended to be a link between basic hydrological research and the practical application of scientific results within the broad field of water management.