{"title":"克里米亚西部堆积海岸地区的波浪状态和岩石动力学","authors":"Y. Goryachkin, V. Fomin","doi":"10.22449/0233-7584-2020-4-451-466","DOIUrl":null,"url":null,"abstract":"Purpose. The paper is aimed at obtaining the wave regime characteristics in the region of the Western Crimea accumulative coast, at constructing the scheme of the sediment along-coastal fluxes for various wind directions, at analyzing the previous notions on the lithodynamical processes in the region under study and their comparison with the obtained results. Methods and Results. The wave regime was analyzed using the results of the retrospective calculations of wind waves in the Black Sea derived due to the model SWAN and based on the ERA-Interim atmospheric reanalysis data for 1979–2018. The data of retrospective calculations performed by the method of annual maximums yielded the parameters of the waves of various repeatability. The sediment along-coastal flux was simulated and the schemes for six wind directions were constructed by the method including model values of the wave characteristics. Conclusions. Operative and extreme characteristics of the wind waves in the region under study are obtained. It is shown that in the above-mentioned area, the most intense sediment along-coastal fluxes occur being affected by the waves formed by the western, southwestern and southern winds. The northwestern and western winds give rise to the sediment main flux directed to the east. At the western wind, to the southeast from the Donuzlav sandbar and in the coast concavities, the sediments are transported in the opposite direction. When the winds are southwestern and southern, the sediment along-coastal flux move from the Cape Uret to Lake Donuzlav northern spit, where it meets the oppositely directed flux. To the southeast from Lake Donuzlav, the multidirectional fluxes arise; at that, in the coast concavities their convergence zones are formed. At the southeastern and eastern winds, the sediment along-coastal fluxes’ capacity decreases sharply; the fluxes are of multidirectional character and they form not a single flux on any of the long stretches of the coastline.","PeriodicalId":43550,"journal":{"name":"Physical Oceanography","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Wave Regime and Lithodynamics in the Region of the Western Crimea Accumulative Coasts\",\"authors\":\"Y. Goryachkin, V. Fomin\",\"doi\":\"10.22449/0233-7584-2020-4-451-466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose. The paper is aimed at obtaining the wave regime characteristics in the region of the Western Crimea accumulative coast, at constructing the scheme of the sediment along-coastal fluxes for various wind directions, at analyzing the previous notions on the lithodynamical processes in the region under study and their comparison with the obtained results. Methods and Results. The wave regime was analyzed using the results of the retrospective calculations of wind waves in the Black Sea derived due to the model SWAN and based on the ERA-Interim atmospheric reanalysis data for 1979–2018. The data of retrospective calculations performed by the method of annual maximums yielded the parameters of the waves of various repeatability. The sediment along-coastal flux was simulated and the schemes for six wind directions were constructed by the method including model values of the wave characteristics. Conclusions. Operative and extreme characteristics of the wind waves in the region under study are obtained. It is shown that in the above-mentioned area, the most intense sediment along-coastal fluxes occur being affected by the waves formed by the western, southwestern and southern winds. The northwestern and western winds give rise to the sediment main flux directed to the east. At the western wind, to the southeast from the Donuzlav sandbar and in the coast concavities, the sediments are transported in the opposite direction. When the winds are southwestern and southern, the sediment along-coastal flux move from the Cape Uret to Lake Donuzlav northern spit, where it meets the oppositely directed flux. To the southeast from Lake Donuzlav, the multidirectional fluxes arise; at that, in the coast concavities their convergence zones are formed. At the southeastern and eastern winds, the sediment along-coastal fluxes’ capacity decreases sharply; the fluxes are of multidirectional character and they form not a single flux on any of the long stretches of the coastline.\",\"PeriodicalId\":43550,\"journal\":{\"name\":\"Physical Oceanography\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Oceanography\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22449/0233-7584-2020-4-451-466\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OCEANOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Oceanography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22449/0233-7584-2020-4-451-466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
Wave Regime and Lithodynamics in the Region of the Western Crimea Accumulative Coasts
Purpose. The paper is aimed at obtaining the wave regime characteristics in the region of the Western Crimea accumulative coast, at constructing the scheme of the sediment along-coastal fluxes for various wind directions, at analyzing the previous notions on the lithodynamical processes in the region under study and their comparison with the obtained results. Methods and Results. The wave regime was analyzed using the results of the retrospective calculations of wind waves in the Black Sea derived due to the model SWAN and based on the ERA-Interim atmospheric reanalysis data for 1979–2018. The data of retrospective calculations performed by the method of annual maximums yielded the parameters of the waves of various repeatability. The sediment along-coastal flux was simulated and the schemes for six wind directions were constructed by the method including model values of the wave characteristics. Conclusions. Operative and extreme characteristics of the wind waves in the region under study are obtained. It is shown that in the above-mentioned area, the most intense sediment along-coastal fluxes occur being affected by the waves formed by the western, southwestern and southern winds. The northwestern and western winds give rise to the sediment main flux directed to the east. At the western wind, to the southeast from the Donuzlav sandbar and in the coast concavities, the sediments are transported in the opposite direction. When the winds are southwestern and southern, the sediment along-coastal flux move from the Cape Uret to Lake Donuzlav northern spit, where it meets the oppositely directed flux. To the southeast from Lake Donuzlav, the multidirectional fluxes arise; at that, in the coast concavities their convergence zones are formed. At the southeastern and eastern winds, the sediment along-coastal fluxes’ capacity decreases sharply; the fluxes are of multidirectional character and they form not a single flux on any of the long stretches of the coastline.