利用共轭梯度法的块混合预处理,用一种新的隐式格式求解热方程

IF 0.7 Q2 MATHEMATICS
S. C. Buranay, N. Arshad
{"title":"利用共轭梯度法的块混合预处理,用一种新的隐式格式求解热方程","authors":"S. C. Buranay, N. Arshad","doi":"10.31489/2023m1/58-80","DOIUrl":null,"url":null,"abstract":"The main goal of the study is the approximation of the solution to the Dirichlet boundary value problem (DBVP) of the heat equation on a rectangle by developing a new difference method on a grid system of hexagons. It is proved that the given special scheme is unconditionally stable and converges to the exact solution on the grids with fourth order accuracy in space variables and second order accuracy in time variable. Secondly, an incomplete block factorization is given for symmetric positive definite block tridiagonal (SPD-BT) matrices utilizing a conservative iterative method that approximates the inverse of the pivoting diagonal blocks by preserving the symmetric positive definite property. Subsequently, by using this factorization block hybrid preconditioning of the conjugate gradient (BHP-CG) method is applied to solve the obtained algebraic system of equations at each time level.","PeriodicalId":29915,"journal":{"name":"Bulletin of the Karaganda University-Mathematics","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Solution of heat equation by a novel implicit scheme using block hybrid preconditioning of the conjugate gradient method\",\"authors\":\"S. C. Buranay, N. Arshad\",\"doi\":\"10.31489/2023m1/58-80\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main goal of the study is the approximation of the solution to the Dirichlet boundary value problem (DBVP) of the heat equation on a rectangle by developing a new difference method on a grid system of hexagons. It is proved that the given special scheme is unconditionally stable and converges to the exact solution on the grids with fourth order accuracy in space variables and second order accuracy in time variable. Secondly, an incomplete block factorization is given for symmetric positive definite block tridiagonal (SPD-BT) matrices utilizing a conservative iterative method that approximates the inverse of the pivoting diagonal blocks by preserving the symmetric positive definite property. Subsequently, by using this factorization block hybrid preconditioning of the conjugate gradient (BHP-CG) method is applied to solve the obtained algebraic system of equations at each time level.\",\"PeriodicalId\":29915,\"journal\":{\"name\":\"Bulletin of the Karaganda University-Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Karaganda University-Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31489/2023m1/58-80\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Karaganda University-Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31489/2023m1/58-80","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

本研究的主要目的是在六边形网格系统上建立一种新的差分方法来近似求解矩形热方程的Dirichlet边值问题。证明了所给出的特殊格式是无条件稳定的,并且在空间变量具有四阶精度、时间变量具有二阶精度的网格上收敛于精确解。其次,对对称正定块三对角(SPD-BT)矩阵,利用保守迭代法,通过保持对称正定性质逼近旋转对角块的逆,给出了不完全块分解。然后,利用该分解块混合预处理共轭梯度法(BHP-CG)在每个时间水平上求解得到的代数方程组。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solution of heat equation by a novel implicit scheme using block hybrid preconditioning of the conjugate gradient method
The main goal of the study is the approximation of the solution to the Dirichlet boundary value problem (DBVP) of the heat equation on a rectangle by developing a new difference method on a grid system of hexagons. It is proved that the given special scheme is unconditionally stable and converges to the exact solution on the grids with fourth order accuracy in space variables and second order accuracy in time variable. Secondly, an incomplete block factorization is given for symmetric positive definite block tridiagonal (SPD-BT) matrices utilizing a conservative iterative method that approximates the inverse of the pivoting diagonal blocks by preserving the symmetric positive definite property. Subsequently, by using this factorization block hybrid preconditioning of the conjugate gradient (BHP-CG) method is applied to solve the obtained algebraic system of equations at each time level.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
50.00%
发文量
50
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信