{"title":"具有n阶导数的非线性随机微分方程","authors":"Yfrah Hafssa, Z. Dahmani","doi":"10.2478/mjpaa-2022-0001","DOIUrl":null,"url":null,"abstract":"Abstract This article deals with a solvability for a problem of random fractional differential equations with n sequential derivatives and nonlocal conditions. The existence and uniqueness of solutions for the problem is obtained by using Banach contraction principle. New random data concepts for the considered problem are introduced and some related definitions are given. Also, some results related to the dependance on the introduced data are established for both random and deterministic cases.","PeriodicalId":36270,"journal":{"name":"Moroccan Journal of Pure and Applied Analysis","volume":"8 1","pages":"1 - 21"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Nonlinear Random Differential Equations with n Sequential Fractional Derivatives\",\"authors\":\"Yfrah Hafssa, Z. Dahmani\",\"doi\":\"10.2478/mjpaa-2022-0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This article deals with a solvability for a problem of random fractional differential equations with n sequential derivatives and nonlocal conditions. The existence and uniqueness of solutions for the problem is obtained by using Banach contraction principle. New random data concepts for the considered problem are introduced and some related definitions are given. Also, some results related to the dependance on the introduced data are established for both random and deterministic cases.\",\"PeriodicalId\":36270,\"journal\":{\"name\":\"Moroccan Journal of Pure and Applied Analysis\",\"volume\":\"8 1\",\"pages\":\"1 - 21\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Moroccan Journal of Pure and Applied Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/mjpaa-2022-0001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moroccan Journal of Pure and Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/mjpaa-2022-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Nonlinear Random Differential Equations with n Sequential Fractional Derivatives
Abstract This article deals with a solvability for a problem of random fractional differential equations with n sequential derivatives and nonlocal conditions. The existence and uniqueness of solutions for the problem is obtained by using Banach contraction principle. New random data concepts for the considered problem are introduced and some related definitions are given. Also, some results related to the dependance on the introduced data are established for both random and deterministic cases.