具有分数阶导数和变系数的普通二阶微分方程的李雅普诺夫不等式的类似物

IF 0.7 Q2 MATHEMATICS
B. Efendiev
{"title":"具有分数阶导数和变系数的普通二阶微分方程的李雅普诺夫不等式的类似物","authors":"B. Efendiev","doi":"10.31489/2022m2/83-92","DOIUrl":null,"url":null,"abstract":"This paper studies an ordinary second-order differential equation with a fractional differentiation operator in the sense of Riemann-Liouville with a variable coefficient. We use the Green’s function’s method to find a representation of the solution of the Dirichlet problem for the equation under consideration when the solvability condition is satisfied. Green’s function to the problem is constructed in terms of the fundamental solution of the equation under study and its properties are proved. The necessary integral condition for the existence of a nontrivial solution to the homogeneous Dirichlet problem, called an analogue of the Lyapunov inequality, is found.","PeriodicalId":29915,"journal":{"name":"Bulletin of the Karaganda University-Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An analogue of the Lyapunov inequality for an ordinary second-order differential equation with a fractional derivative and a variable coefficient\",\"authors\":\"B. Efendiev\",\"doi\":\"10.31489/2022m2/83-92\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies an ordinary second-order differential equation with a fractional differentiation operator in the sense of Riemann-Liouville with a variable coefficient. We use the Green’s function’s method to find a representation of the solution of the Dirichlet problem for the equation under consideration when the solvability condition is satisfied. Green’s function to the problem is constructed in terms of the fundamental solution of the equation under study and its properties are proved. The necessary integral condition for the existence of a nontrivial solution to the homogeneous Dirichlet problem, called an analogue of the Lyapunov inequality, is found.\",\"PeriodicalId\":29915,\"journal\":{\"name\":\"Bulletin of the Karaganda University-Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Karaganda University-Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31489/2022m2/83-92\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Karaganda University-Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31489/2022m2/83-92","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一个具有变系数Riemann-Liouville意义下的分数阶常微分方程。当满足可解性条件时,我们使用格林函数的方法来寻找所考虑的方程的狄利克雷问题的解的表示。根据所研究方程的基本解构造了问题的格林函数,并证明了其性质。给出了齐次Dirichlet问题非平凡解存在的必要积分条件,称为李雅普诺夫不等式的一个类似解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An analogue of the Lyapunov inequality for an ordinary second-order differential equation with a fractional derivative and a variable coefficient
This paper studies an ordinary second-order differential equation with a fractional differentiation operator in the sense of Riemann-Liouville with a variable coefficient. We use the Green’s function’s method to find a representation of the solution of the Dirichlet problem for the equation under consideration when the solvability condition is satisfied. Green’s function to the problem is constructed in terms of the fundamental solution of the equation under study and its properties are proved. The necessary integral condition for the existence of a nontrivial solution to the homogeneous Dirichlet problem, called an analogue of the Lyapunov inequality, is found.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
50.00%
发文量
50
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信