{"title":"具有分数阶导数和变系数的普通二阶微分方程的李雅普诺夫不等式的类似物","authors":"B. Efendiev","doi":"10.31489/2022m2/83-92","DOIUrl":null,"url":null,"abstract":"This paper studies an ordinary second-order differential equation with a fractional differentiation operator in the sense of Riemann-Liouville with a variable coefficient. We use the Green’s function’s method to find a representation of the solution of the Dirichlet problem for the equation under consideration when the solvability condition is satisfied. Green’s function to the problem is constructed in terms of the fundamental solution of the equation under study and its properties are proved. The necessary integral condition for the existence of a nontrivial solution to the homogeneous Dirichlet problem, called an analogue of the Lyapunov inequality, is found.","PeriodicalId":29915,"journal":{"name":"Bulletin of the Karaganda University-Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An analogue of the Lyapunov inequality for an ordinary second-order differential equation with a fractional derivative and a variable coefficient\",\"authors\":\"B. Efendiev\",\"doi\":\"10.31489/2022m2/83-92\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies an ordinary second-order differential equation with a fractional differentiation operator in the sense of Riemann-Liouville with a variable coefficient. We use the Green’s function’s method to find a representation of the solution of the Dirichlet problem for the equation under consideration when the solvability condition is satisfied. Green’s function to the problem is constructed in terms of the fundamental solution of the equation under study and its properties are proved. The necessary integral condition for the existence of a nontrivial solution to the homogeneous Dirichlet problem, called an analogue of the Lyapunov inequality, is found.\",\"PeriodicalId\":29915,\"journal\":{\"name\":\"Bulletin of the Karaganda University-Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Karaganda University-Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31489/2022m2/83-92\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Karaganda University-Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31489/2022m2/83-92","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
An analogue of the Lyapunov inequality for an ordinary second-order differential equation with a fractional derivative and a variable coefficient
This paper studies an ordinary second-order differential equation with a fractional differentiation operator in the sense of Riemann-Liouville with a variable coefficient. We use the Green’s function’s method to find a representation of the solution of the Dirichlet problem for the equation under consideration when the solvability condition is satisfied. Green’s function to the problem is constructed in terms of the fundamental solution of the equation under study and its properties are proved. The necessary integral condition for the existence of a nontrivial solution to the homogeneous Dirichlet problem, called an analogue of the Lyapunov inequality, is found.