随机零阶函数约束优化:Oracle复杂性及其应用

A. Nguyen, K. Balasubramanian
{"title":"随机零阶函数约束优化:Oracle复杂性及其应用","authors":"A. Nguyen, K. Balasubramanian","doi":"10.1287/ijoo.2022.0085","DOIUrl":null,"url":null,"abstract":"Functionally constrained stochastic optimization problems, where neither the objective function nor the constraint functions are analytically available, arise frequently in machine learning applications. In this work, assuming we only have access to the noisy evaluations of the objective and constraint functions, we propose and analyze stochastic zeroth-order algorithms for solving this class of stochastic optimization problem. When the domain of the functions is [Formula: see text], assuming there are m constraint functions, we establish oracle complexities of order [Formula: see text] and [Formula: see text] in the convex and nonconvex settings, respectively, where ϵ represents the accuracy of the solutions required in appropriately defined metrics. The established oracle complexities are, to our knowledge, the first such results in the literature for functionally constrained stochastic zeroth-order optimization problems. We demonstrate the applicability of our algorithms by illustrating their superior performance on the problem of hyperparameter tuning for sampling algorithms and neural network training. Funding: K. Balasubramanian was partially supported by a seed grant from the Center for Data Science and Artificial Intelligence Research, University of California–Davis, and the National Science Foundation [Grant DMS-2053918].","PeriodicalId":73382,"journal":{"name":"INFORMS journal on optimization","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Stochastic Zeroth-Order Functional Constrained Optimization: Oracle Complexity and Applications\",\"authors\":\"A. Nguyen, K. Balasubramanian\",\"doi\":\"10.1287/ijoo.2022.0085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Functionally constrained stochastic optimization problems, where neither the objective function nor the constraint functions are analytically available, arise frequently in machine learning applications. In this work, assuming we only have access to the noisy evaluations of the objective and constraint functions, we propose and analyze stochastic zeroth-order algorithms for solving this class of stochastic optimization problem. When the domain of the functions is [Formula: see text], assuming there are m constraint functions, we establish oracle complexities of order [Formula: see text] and [Formula: see text] in the convex and nonconvex settings, respectively, where ϵ represents the accuracy of the solutions required in appropriately defined metrics. The established oracle complexities are, to our knowledge, the first such results in the literature for functionally constrained stochastic zeroth-order optimization problems. We demonstrate the applicability of our algorithms by illustrating their superior performance on the problem of hyperparameter tuning for sampling algorithms and neural network training. Funding: K. Balasubramanian was partially supported by a seed grant from the Center for Data Science and Artificial Intelligence Research, University of California–Davis, and the National Science Foundation [Grant DMS-2053918].\",\"PeriodicalId\":73382,\"journal\":{\"name\":\"INFORMS journal on optimization\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"INFORMS journal on optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1287/ijoo.2022.0085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"INFORMS journal on optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1287/ijoo.2022.0085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

函数约束随机优化问题在机器学习应用中经常出现,其中目标函数和约束函数在分析上都不可用。在这项工作中,假设我们只能获得目标函数和约束函数的噪声评估,我们提出并分析了解决这类随机优化问题的随机零阶算法。当函数的域为[公式:见文本]时,假设存在m个约束函数,我们分别在凸和非凸设置中建立阶[公式:见图文本]和[公式:见文文本]的预言复杂性,其中ε表示适当定义的度量中所需解的精度。据我们所知,对于函数约束随机零阶优化问题,所建立的预言复杂性是文献中第一个这样的结果。我们通过说明我们的算法在采样算法和神经网络训练的超参数调整问题上的优越性能来证明我们的算法的适用性。资金:K.Balasubramanian得到了加州大学戴维斯分校数据科学与人工智能研究中心和国家科学基金会的种子拨款的部分支持[拨款DMS-2053918]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stochastic Zeroth-Order Functional Constrained Optimization: Oracle Complexity and Applications
Functionally constrained stochastic optimization problems, where neither the objective function nor the constraint functions are analytically available, arise frequently in machine learning applications. In this work, assuming we only have access to the noisy evaluations of the objective and constraint functions, we propose and analyze stochastic zeroth-order algorithms for solving this class of stochastic optimization problem. When the domain of the functions is [Formula: see text], assuming there are m constraint functions, we establish oracle complexities of order [Formula: see text] and [Formula: see text] in the convex and nonconvex settings, respectively, where ϵ represents the accuracy of the solutions required in appropriately defined metrics. The established oracle complexities are, to our knowledge, the first such results in the literature for functionally constrained stochastic zeroth-order optimization problems. We demonstrate the applicability of our algorithms by illustrating their superior performance on the problem of hyperparameter tuning for sampling algorithms and neural network training. Funding: K. Balasubramanian was partially supported by a seed grant from the Center for Data Science and Artificial Intelligence Research, University of California–Davis, and the National Science Foundation [Grant DMS-2053918].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信