未知形式异方差存在下的估计:一种基于Lasso的方法

Q3 Mathematics
Emilio González-Coya, Pierre Perron
{"title":"未知形式异方差存在下的估计:一种基于Lasso的方法","authors":"Emilio González-Coya, Pierre Perron","doi":"10.1515/jem-2023-0007","DOIUrl":null,"url":null,"abstract":"Abstract We study the Feasible Generalized Least-Squares (FGLS) estimation of the parameters of a linear regression model in the presence of heteroskedasticity of unknown form in the errors. We suggest a Lasso based procedure to estimate the skedastic function of the residuals. The advantage of using Lasso is that it can handle a large number of potential covariates, yet still yields a parsimonious specification. Using extensive simulation experiments, we show that our suggested procedure always provide some improvements in the precision of the parameter of interest (lower Mean-Squared Errors) when heteroskedasticity is present and is equivalent to OLS when there is none. It also performs better than previously suggested procedures. Since the fitted value of the skedastic function falls short of the true specification, we form confidence intervals using a bias-corrected version of the usual heteroskedasticity-robust covariance matrix estimator. These have the correct size and substantially shorter length than when using OLS. Our method is applicable to both cross-section (with a random sample) and time series models, though here we concentrate on the former.","PeriodicalId":36727,"journal":{"name":"Journal of Econometric Methods","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Estimation in the Presence of Heteroskedasticity of Unknown Form: A Lasso-based Approach\",\"authors\":\"Emilio González-Coya, Pierre Perron\",\"doi\":\"10.1515/jem-2023-0007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We study the Feasible Generalized Least-Squares (FGLS) estimation of the parameters of a linear regression model in the presence of heteroskedasticity of unknown form in the errors. We suggest a Lasso based procedure to estimate the skedastic function of the residuals. The advantage of using Lasso is that it can handle a large number of potential covariates, yet still yields a parsimonious specification. Using extensive simulation experiments, we show that our suggested procedure always provide some improvements in the precision of the parameter of interest (lower Mean-Squared Errors) when heteroskedasticity is present and is equivalent to OLS when there is none. It also performs better than previously suggested procedures. Since the fitted value of the skedastic function falls short of the true specification, we form confidence intervals using a bias-corrected version of the usual heteroskedasticity-robust covariance matrix estimator. These have the correct size and substantially shorter length than when using OLS. Our method is applicable to both cross-section (with a random sample) and time series models, though here we concentrate on the former.\",\"PeriodicalId\":36727,\"journal\":{\"name\":\"Journal of Econometric Methods\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Econometric Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jem-2023-0007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometric Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jem-2023-0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

摘要研究了误差中存在未知形式异方差时线性回归模型参数的可行广义最小二乘估计。我们提出了一个基于Lasso的程序来估计残差的基函数。使用Lasso的优点是,它可以处理大量潜在的协变量,但仍然会产生吝啬的规范。通过大量的模拟实验,我们表明,当存在异方差时,我们提出的程序总是在感兴趣参数的精度上提供一些改进(较低的均方误差),而当不存在异方差性时,该程序等效于OLS。它的性能也比以前建议的程序要好。由于基函数的拟合值达不到真正的规范,我们使用通常的异方差鲁棒协方差矩阵估计器的偏差校正版本来形成置信区间。与使用OLS时相比,这些具有正确的尺寸和显著更短的长度。我们的方法适用于横截面(随机样本)和时间序列模型,尽管这里我们专注于前者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimation in the Presence of Heteroskedasticity of Unknown Form: A Lasso-based Approach
Abstract We study the Feasible Generalized Least-Squares (FGLS) estimation of the parameters of a linear regression model in the presence of heteroskedasticity of unknown form in the errors. We suggest a Lasso based procedure to estimate the skedastic function of the residuals. The advantage of using Lasso is that it can handle a large number of potential covariates, yet still yields a parsimonious specification. Using extensive simulation experiments, we show that our suggested procedure always provide some improvements in the precision of the parameter of interest (lower Mean-Squared Errors) when heteroskedasticity is present and is equivalent to OLS when there is none. It also performs better than previously suggested procedures. Since the fitted value of the skedastic function falls short of the true specification, we form confidence intervals using a bias-corrected version of the usual heteroskedasticity-robust covariance matrix estimator. These have the correct size and substantially shorter length than when using OLS. Our method is applicable to both cross-section (with a random sample) and time series models, though here we concentrate on the former.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Econometric Methods
Journal of Econometric Methods Economics, Econometrics and Finance-Economics and Econometrics
CiteScore
2.20
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信