带真空的非齐次不可压缩Navier-Stokes方程强解的整体存在性和指数衰减

IF 0.6 Q4 MATHEMATICS, APPLIED
Dehua Wang, Z. Ye
{"title":"带真空的非齐次不可压缩Navier-Stokes方程强解的整体存在性和指数衰减","authors":"Dehua Wang, Z. Ye","doi":"10.4310/maa.2022.v29.n1.a3","DOIUrl":null,"url":null,"abstract":"The inhomogeneous incompressible Navier-Stokes equations with fractional Laplacian dissipations in the multi-dimensional whole space are considered. The existence and uniqueness of global strong solution with vacuum are established for large initial data. The exponential decay-in-time of the strong solution is also obtained, which is different from the homogeneous case. The initial density may have vacuum and even compact support.","PeriodicalId":18467,"journal":{"name":"Methods and applications of analysis","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2018-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Global existence and exponential decay of strong solutions for the inhomogeneous incompressible Navier–Stokes equations with vacuum\",\"authors\":\"Dehua Wang, Z. Ye\",\"doi\":\"10.4310/maa.2022.v29.n1.a3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The inhomogeneous incompressible Navier-Stokes equations with fractional Laplacian dissipations in the multi-dimensional whole space are considered. The existence and uniqueness of global strong solution with vacuum are established for large initial data. The exponential decay-in-time of the strong solution is also obtained, which is different from the homogeneous case. The initial density may have vacuum and even compact support.\",\"PeriodicalId\":18467,\"journal\":{\"name\":\"Methods and applications of analysis\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2018-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods and applications of analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/maa.2022.v29.n1.a3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods and applications of analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/maa.2022.v29.n1.a3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 6

摘要

研究了多维整体空间中具有分数阶拉普拉斯耗散的非齐次不可压缩Navier-Stokes方程。对于大初始数据,建立了带真空的全局强解的存在唯一性。得到了与齐次情况不同的强解的指数时间衰减。初始密度可以是真空的,甚至是致密的支撑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global existence and exponential decay of strong solutions for the inhomogeneous incompressible Navier–Stokes equations with vacuum
The inhomogeneous incompressible Navier-Stokes equations with fractional Laplacian dissipations in the multi-dimensional whole space are considered. The existence and uniqueness of global strong solution with vacuum are established for large initial data. The exponential decay-in-time of the strong solution is also obtained, which is different from the homogeneous case. The initial density may have vacuum and even compact support.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Methods and applications of analysis
Methods and applications of analysis MATHEMATICS, APPLIED-
自引率
33.30%
发文量
3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信