预测多孔介质中的流动:物理驱动的神经网络方法的比较

Q4 Engineering
Shankar Lal Dangi, V. Karaliūtė, N. K. Maurya, M. Pal
{"title":"预测多孔介质中的流动:物理驱动的神经网络方法的比较","authors":"Shankar Lal Dangi, V. Karaliūtė, N. K. Maurya, M. Pal","doi":"10.21595/mme.2023.23174","DOIUrl":null,"url":null,"abstract":"This paper presents the development of physics-informed machine learning models for subsurface flows, specifically for determining pressure variation in the subsurface without the use of numerical modeling schemes. The numerical elliptic operator is replaced with a neural network operator and includes comparisons of several different machine learning models, along with linear regression, support vector regression, lasso, random forest regression, decision tree regression, light weight gradient boosting, eXtreme gradient boosting, convolution neural network, artificial neural network, and perceptron. The mean of absolute error of all models is compared, and error residual plots are used as a measure of error to determine the best-performing method.","PeriodicalId":32958,"journal":{"name":"Mathematical Models in Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting flow in porous media: a comparison of physics-driven neural network approaches\",\"authors\":\"Shankar Lal Dangi, V. Karaliūtė, N. K. Maurya, M. Pal\",\"doi\":\"10.21595/mme.2023.23174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the development of physics-informed machine learning models for subsurface flows, specifically for determining pressure variation in the subsurface without the use of numerical modeling schemes. The numerical elliptic operator is replaced with a neural network operator and includes comparisons of several different machine learning models, along with linear regression, support vector regression, lasso, random forest regression, decision tree regression, light weight gradient boosting, eXtreme gradient boosting, convolution neural network, artificial neural network, and perceptron. The mean of absolute error of all models is compared, and error residual plots are used as a measure of error to determine the best-performing method.\",\"PeriodicalId\":32958,\"journal\":{\"name\":\"Mathematical Models in Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Models in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21595/mme.2023.23174\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Models in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21595/mme.2023.23174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了地下流动的基于物理的机器学习模型的开发,特别是在不使用数值建模方案的情况下确定地下压力变化的模型。数值椭圆算子被神经网络算子取代,包括几种不同机器学习模型的比较,以及线性回归、支持向量回归、套索、随机森林回归、决策树回归、轻量级梯度增强、极限梯度增强、卷积神经网络、人工神经网络和感知器。比较了所有模型的绝对误差平均值,并使用误差残差图作为误差测量,以确定性能最佳的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting flow in porous media: a comparison of physics-driven neural network approaches
This paper presents the development of physics-informed machine learning models for subsurface flows, specifically for determining pressure variation in the subsurface without the use of numerical modeling schemes. The numerical elliptic operator is replaced with a neural network operator and includes comparisons of several different machine learning models, along with linear regression, support vector regression, lasso, random forest regression, decision tree regression, light weight gradient boosting, eXtreme gradient boosting, convolution neural network, artificial neural network, and perceptron. The mean of absolute error of all models is compared, and error residual plots are used as a measure of error to determine the best-performing method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.10
自引率
0.00%
发文量
8
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信