V. Klimavičius, V. Klimkevicius, L. Dagys, K. Aidas, R. Makuška, V. Balevičius
{"title":"智能聚合物中自旋动力学和局部无序的固态核磁共振研究:PDMAEMA","authors":"V. Klimavičius, V. Klimkevicius, L. Dagys, K. Aidas, R. Makuška, V. Balevičius","doi":"10.3952/physics.v62i4.4821","DOIUrl":null,"url":null,"abstract":"The solid-state 1H and 13C NMR spectra as well as the 1H–13C cross-polarization upon magic angle spinning (CP MAS) kinetics were studied for poly[2-(dimethylamino)ethyl methacrylate] (PDMAEMA), i.e. a smart pH- and thermo-responsive polymer. The stereochemical content of PDMAEMA was determined from the complex shaped 13C MAS signal of CH3 group. The kinetic data were processed using the Hirschinger and Raya spin dynamics model that includes the complete scheme of rotating frame spinlattice relaxation pathways. The general solution was adapted for the spin cluster treatment. The earlier studied experimental CP MAS kinetics data of poly [2-(methacryloyloxy)ethyl trimethylammonium chloride] (PMETAC), i.e. one of its quaternized form, were revisited and newly processed applying this model. The spin-lattice relaxation of protons in the rotating frame in PDMAEMA and PMETAC occurs in the same scale from one to tens of milliseconds. Very high anisotropy of spin-diffusion was found for both polymers. However, the local disorder of various spin sites in PDMAEMA is significantly higher than in PMETAC. It is characterized by the order parameters 0.71–0.77 and 0.87–0.91, respectively. The main chain in PDMAEMA is also more disordered and more flexible than in PMETAC.","PeriodicalId":18144,"journal":{"name":"Lithuanian Journal of Physics","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Solid-state NMR study of spin dynamics and local disorder in smart polymers: PDMAEMA\",\"authors\":\"V. Klimavičius, V. Klimkevicius, L. Dagys, K. Aidas, R. Makuška, V. Balevičius\",\"doi\":\"10.3952/physics.v62i4.4821\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The solid-state 1H and 13C NMR spectra as well as the 1H–13C cross-polarization upon magic angle spinning (CP MAS) kinetics were studied for poly[2-(dimethylamino)ethyl methacrylate] (PDMAEMA), i.e. a smart pH- and thermo-responsive polymer. The stereochemical content of PDMAEMA was determined from the complex shaped 13C MAS signal of CH3 group. The kinetic data were processed using the Hirschinger and Raya spin dynamics model that includes the complete scheme of rotating frame spinlattice relaxation pathways. The general solution was adapted for the spin cluster treatment. The earlier studied experimental CP MAS kinetics data of poly [2-(methacryloyloxy)ethyl trimethylammonium chloride] (PMETAC), i.e. one of its quaternized form, were revisited and newly processed applying this model. The spin-lattice relaxation of protons in the rotating frame in PDMAEMA and PMETAC occurs in the same scale from one to tens of milliseconds. Very high anisotropy of spin-diffusion was found for both polymers. However, the local disorder of various spin sites in PDMAEMA is significantly higher than in PMETAC. It is characterized by the order parameters 0.71–0.77 and 0.87–0.91, respectively. The main chain in PDMAEMA is also more disordered and more flexible than in PMETAC.\",\"PeriodicalId\":18144,\"journal\":{\"name\":\"Lithuanian Journal of Physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lithuanian Journal of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3952/physics.v62i4.4821\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lithuanian Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3952/physics.v62i4.4821","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Solid-state NMR study of spin dynamics and local disorder in smart polymers: PDMAEMA
The solid-state 1H and 13C NMR spectra as well as the 1H–13C cross-polarization upon magic angle spinning (CP MAS) kinetics were studied for poly[2-(dimethylamino)ethyl methacrylate] (PDMAEMA), i.e. a smart pH- and thermo-responsive polymer. The stereochemical content of PDMAEMA was determined from the complex shaped 13C MAS signal of CH3 group. The kinetic data were processed using the Hirschinger and Raya spin dynamics model that includes the complete scheme of rotating frame spinlattice relaxation pathways. The general solution was adapted for the spin cluster treatment. The earlier studied experimental CP MAS kinetics data of poly [2-(methacryloyloxy)ethyl trimethylammonium chloride] (PMETAC), i.e. one of its quaternized form, were revisited and newly processed applying this model. The spin-lattice relaxation of protons in the rotating frame in PDMAEMA and PMETAC occurs in the same scale from one to tens of milliseconds. Very high anisotropy of spin-diffusion was found for both polymers. However, the local disorder of various spin sites in PDMAEMA is significantly higher than in PMETAC. It is characterized by the order parameters 0.71–0.77 and 0.87–0.91, respectively. The main chain in PDMAEMA is also more disordered and more flexible than in PMETAC.
期刊介绍:
The main aim of the Lithuanian Journal of Physics is to reflect the most recent advances in various fields of theoretical, experimental, and applied physics, including: mathematical and computational physics; subatomic physics; atoms and molecules; chemical physics; electrodynamics and wave processes; nonlinear and coherent optics; spectroscopy.