三维α-余辛流形的临界点方程

Pub Date : 2020-03-31 DOI:10.5666/KMJ.2020.60.1.177
A. Blaga, C. Dey
{"title":"三维α-余辛流形的临界点方程","authors":"A. Blaga, C. Dey","doi":"10.5666/KMJ.2020.60.1.177","DOIUrl":null,"url":null,"abstract":"The object of the present paper is to study the critical point equation (CPE) on 3-dimensional α-cosymplectic manifolds. We prove that if a 3-dimensional connected αcosymplectic manifold satisfies the Miao-Tam critical point equation, then the manifold is of constant sectional curvature −α, provided Dλ 6= (ξλ)ξ. We also give several interesting corollaries of the main result.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The Critical Point Equation on 3-dimensional α-cosymplectic Manifolds\",\"authors\":\"A. Blaga, C. Dey\",\"doi\":\"10.5666/KMJ.2020.60.1.177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The object of the present paper is to study the critical point equation (CPE) on 3-dimensional α-cosymplectic manifolds. We prove that if a 3-dimensional connected αcosymplectic manifold satisfies the Miao-Tam critical point equation, then the manifold is of constant sectional curvature −α, provided Dλ 6= (ξλ)ξ. We also give several interesting corollaries of the main result.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5666/KMJ.2020.60.1.177\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5666/KMJ.2020.60.1.177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文的目的是研究三维α-辛流形上的临界点方程。我们证明了如果一个三维连通的α共辛流形满足Mio-Tam临界点方程,则该流形具有常截面曲率-α,条件是Dλ6=(ξλ)ξ。我们还给出了主要结果的几个有趣的推论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
The Critical Point Equation on 3-dimensional α-cosymplectic Manifolds
The object of the present paper is to study the critical point equation (CPE) on 3-dimensional α-cosymplectic manifolds. We prove that if a 3-dimensional connected αcosymplectic manifold satisfies the Miao-Tam critical point equation, then the manifold is of constant sectional curvature −α, provided Dλ 6= (ξλ)ξ. We also give several interesting corollaries of the main result.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信