金属磁脉冲加工用双回路谐振功率放大器

Q3 Energy
Y. Batygin, S. Shinderuk, E. Chaplygin, D.V. Fendrikov
{"title":"金属磁脉冲加工用双回路谐振功率放大器","authors":"Y. Batygin, S. Shinderuk, E. Chaplygin, D.V. Fendrikov","doi":"10.15407/techned2022.03.029","DOIUrl":null,"url":null,"abstract":"The authors propose and substantiate the functionality of a magnetic-pulse installation consisting of two blocks, the first of which is a resonant double-circuit charger of a capacitive energy storage, and the second block is a discharge circuit with an inductor-tool for performing a given production operation. It is shown that the voltage changes in time according to an exponentially growing harmonic law. It was found that the amplitude of the voltage across the capacitor can be regulated by varying the characteristics of the coupling transformer between the circuits and the characteristics of the circuit of the reactive power conversion unit. Numerical assessments of the characteristics of the charging process showed a high efficiency of voltage formation on the capacitive storage due to resonance phenomena (the transformation ratio is equal to the Q-factor of the circuit ~ 20), which is not comparable with the well-known traditional indicators of induction methods. In terms of phase – the length in time to the maximum charge in the adopted circuit of the active electric power amplifier is set by the inequality - That is, after ~ 30 periods of charging current, the excited voltage reaches a maximum (~ 20 times higher than the source voltage), which will correspond to the end of the transient process and the establishment of a steady state of operation. An example of calculating the characteristics of an elementary resonant base illustrates the effective capabilities of a magnetic-pulse installation, consisting of a resonant charger of a capacitive energy storage and a load in the form of an inductor-tool for flat stamping of metal products. It was found that the square of the ratio of operating frequencies in the load unit and the reactive power amplification unit quantitatively determines the fundamental possibility of resonant amplification of the active electrical energy of a harmonic signal. References 12, figures 5.","PeriodicalId":38557,"journal":{"name":"Technical Electrodynamics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"DOUBLE-CIRCUIT RESONANT ELECTRIC POWER AMPLIFIER FOR MAGNETIC-PULSE PROCESSING OF METALS\",\"authors\":\"Y. Batygin, S. Shinderuk, E. Chaplygin, D.V. Fendrikov\",\"doi\":\"10.15407/techned2022.03.029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors propose and substantiate the functionality of a magnetic-pulse installation consisting of two blocks, the first of which is a resonant double-circuit charger of a capacitive energy storage, and the second block is a discharge circuit with an inductor-tool for performing a given production operation. It is shown that the voltage changes in time according to an exponentially growing harmonic law. It was found that the amplitude of the voltage across the capacitor can be regulated by varying the characteristics of the coupling transformer between the circuits and the characteristics of the circuit of the reactive power conversion unit. Numerical assessments of the characteristics of the charging process showed a high efficiency of voltage formation on the capacitive storage due to resonance phenomena (the transformation ratio is equal to the Q-factor of the circuit ~ 20), which is not comparable with the well-known traditional indicators of induction methods. In terms of phase – the length in time to the maximum charge in the adopted circuit of the active electric power amplifier is set by the inequality - That is, after ~ 30 periods of charging current, the excited voltage reaches a maximum (~ 20 times higher than the source voltage), which will correspond to the end of the transient process and the establishment of a steady state of operation. An example of calculating the characteristics of an elementary resonant base illustrates the effective capabilities of a magnetic-pulse installation, consisting of a resonant charger of a capacitive energy storage and a load in the form of an inductor-tool for flat stamping of metal products. It was found that the square of the ratio of operating frequencies in the load unit and the reactive power amplification unit quantitatively determines the fundamental possibility of resonant amplification of the active electrical energy of a harmonic signal. References 12, figures 5.\",\"PeriodicalId\":38557,\"journal\":{\"name\":\"Technical Electrodynamics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Technical Electrodynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15407/techned2022.03.029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technical Electrodynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/techned2022.03.029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Energy","Score":null,"Total":0}
引用次数: 1

摘要

作者提出并证实了由两个块组成的磁脉冲装置的功能,第一个块是电容储能器的谐振双电路充电器,第二个块是带有电感器工具的放电电路,用于执行给定的生产操作。结果表明,电压随时间的变化遵循指数增长的谐波定律。发现可以通过改变电路之间的耦合变压器的特性和无功功率转换单元的电路的特性来调节电容器两端的电压幅度。对充电过程特性的数值评估显示,由于谐振现象(变比等于电路的Q因子~20),电容存储器上的电压形成效率很高,这与众所周知的传统感应方法指标不可相比。就相位而言——有源功率放大器所采用电路中达到最大电荷的时间长度由不等式设定——也就是说,在约30个充电电流周期后,激励电压达到最大值(比源电压高约20倍),这将对应于瞬态过程的结束和稳定工作状态的建立。一个计算基本谐振基座特性的例子说明了磁脉冲装置的有效能力,该装置由电容储能器的谐振充电器和用于金属产品平面冲压的电感器工具形式的负载组成。已经发现,负载单元和无功功率放大单元中的工作频率之比的平方定量地确定了谐波信号的有功电能的谐振放大的基本可能性。参考文献12,图5。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DOUBLE-CIRCUIT RESONANT ELECTRIC POWER AMPLIFIER FOR MAGNETIC-PULSE PROCESSING OF METALS
The authors propose and substantiate the functionality of a magnetic-pulse installation consisting of two blocks, the first of which is a resonant double-circuit charger of a capacitive energy storage, and the second block is a discharge circuit with an inductor-tool for performing a given production operation. It is shown that the voltage changes in time according to an exponentially growing harmonic law. It was found that the amplitude of the voltage across the capacitor can be regulated by varying the characteristics of the coupling transformer between the circuits and the characteristics of the circuit of the reactive power conversion unit. Numerical assessments of the characteristics of the charging process showed a high efficiency of voltage formation on the capacitive storage due to resonance phenomena (the transformation ratio is equal to the Q-factor of the circuit ~ 20), which is not comparable with the well-known traditional indicators of induction methods. In terms of phase – the length in time to the maximum charge in the adopted circuit of the active electric power amplifier is set by the inequality - That is, after ~ 30 periods of charging current, the excited voltage reaches a maximum (~ 20 times higher than the source voltage), which will correspond to the end of the transient process and the establishment of a steady state of operation. An example of calculating the characteristics of an elementary resonant base illustrates the effective capabilities of a magnetic-pulse installation, consisting of a resonant charger of a capacitive energy storage and a load in the form of an inductor-tool for flat stamping of metal products. It was found that the square of the ratio of operating frequencies in the load unit and the reactive power amplification unit quantitatively determines the fundamental possibility of resonant amplification of the active electrical energy of a harmonic signal. References 12, figures 5.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Technical Electrodynamics
Technical Electrodynamics Energy-Energy Engineering and Power Technology
CiteScore
1.80
自引率
0.00%
发文量
72
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信