哪种收缩更好?用一个清洁的随机矩阵进行投资组合选择

IF 1.2 4区 经济学 Q3 BUSINESS, FINANCE
Young C. Joo, Sung Y. Park
{"title":"哪种收缩更好?用一个清洁的随机矩阵进行投资组合选择","authors":"Young C. Joo, Sung Y. Park","doi":"10.1080/10293523.2023.2246244","DOIUrl":null,"url":null,"abstract":"ABSTRACT Covariance matrix estimation is of great importance in formulating a portfolio. The sample covariance matrix, the most frequently used estimator, is well known to be unstable due to the estimation error, when the sample size is small. A shrinkage approach is one of the popular methods for estimating a stable covariance matrix. This study compares and evaluates performance of the three different shrinkage type covariance matrix estimators for the optimal portfolio selection strategy. To evaluate the performance of the covariance matrix estimators, we consider both the in- and out-of-sample value at risk, conditional value at risk, Sharpe-ratio, adjusted Sharpe-ratio, and a beta of the portfolio selection strategies. Empirical results show that a portfolio using shrinkage covariance matrix estimator with the identity matrix or constant correlation matrix as the shrinkage target tends to have a lower risk. We also find that the random matrix approach has a relatively high out-of-sample return and Sharpe-ratio under the small sample size cases.","PeriodicalId":44496,"journal":{"name":"Investment Analysts Journal","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Which shrinkage is better? Portfolio selection with a cleaned random matrix\",\"authors\":\"Young C. Joo, Sung Y. Park\",\"doi\":\"10.1080/10293523.2023.2246244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Covariance matrix estimation is of great importance in formulating a portfolio. The sample covariance matrix, the most frequently used estimator, is well known to be unstable due to the estimation error, when the sample size is small. A shrinkage approach is one of the popular methods for estimating a stable covariance matrix. This study compares and evaluates performance of the three different shrinkage type covariance matrix estimators for the optimal portfolio selection strategy. To evaluate the performance of the covariance matrix estimators, we consider both the in- and out-of-sample value at risk, conditional value at risk, Sharpe-ratio, adjusted Sharpe-ratio, and a beta of the portfolio selection strategies. Empirical results show that a portfolio using shrinkage covariance matrix estimator with the identity matrix or constant correlation matrix as the shrinkage target tends to have a lower risk. We also find that the random matrix approach has a relatively high out-of-sample return and Sharpe-ratio under the small sample size cases.\",\"PeriodicalId\":44496,\"journal\":{\"name\":\"Investment Analysts Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Investment Analysts Journal\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1080/10293523.2023.2246244\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Investment Analysts Journal","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/10293523.2023.2246244","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Which shrinkage is better? Portfolio selection with a cleaned random matrix
ABSTRACT Covariance matrix estimation is of great importance in formulating a portfolio. The sample covariance matrix, the most frequently used estimator, is well known to be unstable due to the estimation error, when the sample size is small. A shrinkage approach is one of the popular methods for estimating a stable covariance matrix. This study compares and evaluates performance of the three different shrinkage type covariance matrix estimators for the optimal portfolio selection strategy. To evaluate the performance of the covariance matrix estimators, we consider both the in- and out-of-sample value at risk, conditional value at risk, Sharpe-ratio, adjusted Sharpe-ratio, and a beta of the portfolio selection strategies. Empirical results show that a portfolio using shrinkage covariance matrix estimator with the identity matrix or constant correlation matrix as the shrinkage target tends to have a lower risk. We also find that the random matrix approach has a relatively high out-of-sample return and Sharpe-ratio under the small sample size cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Investment Analysts Journal
Investment Analysts Journal BUSINESS, FINANCE-
CiteScore
1.90
自引率
11.10%
发文量
22
期刊介绍: The Investment Analysts Journal is an international, peer-reviewed journal, publishing high-quality, original research three times a year. The journal publishes significant new research in finance and investments and seeks to establish a balance between theoretical and empirical studies. Papers written in any areas of finance, investment, accounting and economics will be considered for publication. All contributions are welcome but are subject to an objective selection procedure to ensure that published articles answer the criteria of scientific objectivity, importance and replicability. Readability and good writing style are important. No articles which have been published or are under review elsewhere will be considered. All submitted manuscripts are subject to initial appraisal by the Editor, and, if found suitable for further consideration, to peer review by independent, anonymous expert referees. All peer review is double blind and submission is via email. Accepted papers will then pass through originality checking software. The editors reserve the right to make the final decision with respect to publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信