p-GINZBURG-LANDAU模型的能量集中性质

Pub Date : 2021-08-25 DOI:10.1017/nmj.2021.10
Y. Lei
{"title":"p-GINZBURG-LANDAU模型的能量集中性质","authors":"Y. Lei","doi":"10.1017/nmj.2021.10","DOIUrl":null,"url":null,"abstract":"Abstract This paper is concerned with the p-Ginzburg–Landau (p-GL) type model with \n$p\\neq 2$\n . First, we obtain global energy estimates and energy concentration properties by the singularity analysis. Next, we give a decay rate of \n$1-|u_\\varepsilon |$\n in the domain away from the singularities when \n$\\varepsilon \\to 0$\n , where \n$u_\\varepsilon $\n is a minimizer of p-GL functional with \n$p \\in (1,2)$\n . Finally, we obtain a Liouville theorem for the finite energy solutions of the p-GL equation on \n$\\mathbb {R}^2$\n .","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ENERGY CONCENTRATION PROPERTIES OF A p-GINZBURG–LANDAU MODEL\",\"authors\":\"Y. Lei\",\"doi\":\"10.1017/nmj.2021.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper is concerned with the p-Ginzburg–Landau (p-GL) type model with \\n$p\\\\neq 2$\\n . First, we obtain global energy estimates and energy concentration properties by the singularity analysis. Next, we give a decay rate of \\n$1-|u_\\\\varepsilon |$\\n in the domain away from the singularities when \\n$\\\\varepsilon \\\\to 0$\\n , where \\n$u_\\\\varepsilon $\\n is a minimizer of p-GL functional with \\n$p \\\\in (1,2)$\\n . Finally, we obtain a Liouville theorem for the finite energy solutions of the p-GL equation on \\n$\\\\mathbb {R}^2$\\n .\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/nmj.2021.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/nmj.2021.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了p-Ginzburg-Landau (p-GL)型模型的$p\neq 2$。首先,通过奇异性分析得到了整体能量估计和能量集中特性。接下来,我们给出了在远离奇异点的区域中$1-|u_\varepsilon |$的衰减率,当$\varepsilon \to 0$时,其中$u_\varepsilon $是与$p \in (1,2)$的p-GL函数的最小值。最后,我们在$\mathbb {R}^2$上得到了p-GL方程有限能量解的一个Liouville定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
ENERGY CONCENTRATION PROPERTIES OF A p-GINZBURG–LANDAU MODEL
Abstract This paper is concerned with the p-Ginzburg–Landau (p-GL) type model with $p\neq 2$ . First, we obtain global energy estimates and energy concentration properties by the singularity analysis. Next, we give a decay rate of $1-|u_\varepsilon |$ in the domain away from the singularities when $\varepsilon \to 0$ , where $u_\varepsilon $ is a minimizer of p-GL functional with $p \in (1,2)$ . Finally, we obtain a Liouville theorem for the finite energy solutions of the p-GL equation on $\mathbb {R}^2$ .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信