{"title":"一类局部和非局部非线性椭圆型问题的存在性结果","authors":"Said Ait Temghart, C. Allalou, Adil Abbassi","doi":"10.56754/0719-0646.2501.001","DOIUrl":null,"url":null,"abstract":"In this paper, we study the $p$-Laplacian problems in the case where $p$ depends on the solution itself. We consider two situations, when $p$ is a local and nonlocal quantity. By using a singular perturbation technique, we prove the existence of weak solutions for the problem associated to the following equation $$ \\begin{cases} -\\mathrm{d}\\mathrm{i}\\mathrm{v}(|\\nabla u|^{p(u)-2}\\nabla u)+|u|^{p(u)-2}u=f & \\mbox{in}\\; \\Omega\\\\ u=0& \\mbox{on}\\; \\partial\\Omega , \\end{cases}$$ and also for its nonlocal version. The main goal of this paper is to extend the results established by M. Chipot and H. B. de Oliveira (Math. Ann., 2019, 375, 283-306).","PeriodicalId":36416,"journal":{"name":"Cubo","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence results for a class of local and nonlocal nonlinear elliptic problems\",\"authors\":\"Said Ait Temghart, C. Allalou, Adil Abbassi\",\"doi\":\"10.56754/0719-0646.2501.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the $p$-Laplacian problems in the case where $p$ depends on the solution itself. We consider two situations, when $p$ is a local and nonlocal quantity. By using a singular perturbation technique, we prove the existence of weak solutions for the problem associated to the following equation $$ \\\\begin{cases} -\\\\mathrm{d}\\\\mathrm{i}\\\\mathrm{v}(|\\\\nabla u|^{p(u)-2}\\\\nabla u)+|u|^{p(u)-2}u=f & \\\\mbox{in}\\\\; \\\\Omega\\\\\\\\ u=0& \\\\mbox{on}\\\\; \\\\partial\\\\Omega , \\\\end{cases}$$ and also for its nonlocal version. The main goal of this paper is to extend the results established by M. Chipot and H. B. de Oliveira (Math. Ann., 2019, 375, 283-306).\",\"PeriodicalId\":36416,\"journal\":{\"name\":\"Cubo\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cubo\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56754/0719-0646.2501.001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cubo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56754/0719-0646.2501.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
本文研究了$p$依赖于解本身的情况下的$p$ -拉普拉斯问题。我们考虑两种情况,其中$p$是一个局部量和一个非局部量。利用奇异摄动技术,我们证明了下述方程$$ \begin{cases} -\mathrm{d}\mathrm{i}\mathrm{v}(|\nabla u|^{p(u)-2}\nabla u)+|u|^{p(u)-2}u=f & \mbox{in}\; \Omega\\ u=0& \mbox{on}\; \partial\Omega , \end{cases}$$及其非局部版本的弱解的存在性。本文的主要目的是推广M. Chipot和H. B. de Oliveira(数学)建立的结果。安。生物医学工程学报,2019,37(3):283-306。
Existence results for a class of local and nonlocal nonlinear elliptic problems
In this paper, we study the $p$-Laplacian problems in the case where $p$ depends on the solution itself. We consider two situations, when $p$ is a local and nonlocal quantity. By using a singular perturbation technique, we prove the existence of weak solutions for the problem associated to the following equation $$ \begin{cases} -\mathrm{d}\mathrm{i}\mathrm{v}(|\nabla u|^{p(u)-2}\nabla u)+|u|^{p(u)-2}u=f & \mbox{in}\; \Omega\\ u=0& \mbox{on}\; \partial\Omega , \end{cases}$$ and also for its nonlocal version. The main goal of this paper is to extend the results established by M. Chipot and H. B. de Oliveira (Math. Ann., 2019, 375, 283-306).