{"title":"Janus激酶3抑制剂2,4-二取代嘧啶衍生物的药效团建模和3D-QSAR研究","authors":"N. Agrawal","doi":"10.1142/s0219633620500017","DOIUrl":null,"url":null,"abstract":"A robust pharmacophore model was developed and the structure-activity relationship was analyzed using 71 pyrimidine derivatives reported for covalent Janus Kinase 3 (JAK3) inhibition. Pharmacophore...","PeriodicalId":49976,"journal":{"name":"Journal of Theoretical & Computational Chemistry","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2020-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/s0219633620500017","citationCount":"0","resultStr":"{\"title\":\"Pharmacophore modeling and 3D-QSAR studies of 2,4-disubstituted pyrimidine derivatives as Janus kinase 3 inhibitors\",\"authors\":\"N. Agrawal\",\"doi\":\"10.1142/s0219633620500017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A robust pharmacophore model was developed and the structure-activity relationship was analyzed using 71 pyrimidine derivatives reported for covalent Janus Kinase 3 (JAK3) inhibition. Pharmacophore...\",\"PeriodicalId\":49976,\"journal\":{\"name\":\"Journal of Theoretical & Computational Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2020-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1142/s0219633620500017\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Theoretical & Computational Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219633620500017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical & Computational Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219633620500017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
Pharmacophore modeling and 3D-QSAR studies of 2,4-disubstituted pyrimidine derivatives as Janus kinase 3 inhibitors
A robust pharmacophore model was developed and the structure-activity relationship was analyzed using 71 pyrimidine derivatives reported for covalent Janus Kinase 3 (JAK3) inhibition. Pharmacophore...
期刊介绍:
The Journal of Theoretical and Computational Chemistry (JTCC) is an international interdisciplinary journal aimed at providing comprehensive coverage on the latest developments and applications of research in the ever-expanding field of theoretical and computational chemistry.
JTCC publishes regular articles and reviews on new methodology, software, web server and database developments. The applications of existing theoretical and computational methods which produce significant new insights into important problems are also welcomed. Papers reporting joint computational and experimental investigations are encouraged. The journal will not consider manuscripts reporting straightforward calculations of the properties of molecules with existing software packages without addressing a significant scientific problem.
Areas covered by the journal include molecular dynamics, computer-aided molecular design, modeling effects of mutation on stability and dynamics of macromolecules, quantum mechanics, statistical mechanics and other related topics.