{"title":"磷酸根离子对碳酸钙磷酸盐非晶态的稳定作用","authors":"I. E. Glazov, V. Krut’ko, O. Musskaya, A. Kulak","doi":"10.29235/1561-8323-2022-66-5-501-508","DOIUrl":null,"url":null,"abstract":"Amorphous calcium carbonate-phosphate with a Ca/P ratio of 1.83 was precipitated from Ca2+, Ca2+, PO3–4, CO2-3 − containing solutions at pH 10 and stabilized by ethanol dehydration and followed by heating at 400 °C. The presence of PO3–4 ions in the structure of amorphous calcium carbonate-phosphate provides its increased resistance to transformation into crystalline phases. Aging in a Ca2+, PO3–4 , CO2-3 − containing mother solution at pH 10 for 4 days promotes the transformation of amorphous calcium carbonate-phosphate into amorphous calcium carbonate-phosphate / carbonated hydroxyapatite / calcite. The combined effect of PO3–4 и CO2-3 − ions in the aquatic environment on the crystallization of amorphous calcium carbonate-phosphate into carbonated hydroxyapatite contributes to a maximum stabilization of the amorphous state that provides a high extent of bioactivity.","PeriodicalId":41825,"journal":{"name":"DOKLADY NATSIONALNOI AKADEMII NAUK BELARUSI","volume":" ","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2022-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stabilization of the amorphous state of calcium carbonate-phosphates with phosphate ions\",\"authors\":\"I. E. Glazov, V. Krut’ko, O. Musskaya, A. Kulak\",\"doi\":\"10.29235/1561-8323-2022-66-5-501-508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Amorphous calcium carbonate-phosphate with a Ca/P ratio of 1.83 was precipitated from Ca2+, Ca2+, PO3–4, CO2-3 − containing solutions at pH 10 and stabilized by ethanol dehydration and followed by heating at 400 °C. The presence of PO3–4 ions in the structure of amorphous calcium carbonate-phosphate provides its increased resistance to transformation into crystalline phases. Aging in a Ca2+, PO3–4 , CO2-3 − containing mother solution at pH 10 for 4 days promotes the transformation of amorphous calcium carbonate-phosphate into amorphous calcium carbonate-phosphate / carbonated hydroxyapatite / calcite. The combined effect of PO3–4 и CO2-3 − ions in the aquatic environment on the crystallization of amorphous calcium carbonate-phosphate into carbonated hydroxyapatite contributes to a maximum stabilization of the amorphous state that provides a high extent of bioactivity.\",\"PeriodicalId\":41825,\"journal\":{\"name\":\"DOKLADY NATSIONALNOI AKADEMII NAUK BELARUSI\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2022-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DOKLADY NATSIONALNOI AKADEMII NAUK BELARUSI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29235/1561-8323-2022-66-5-501-508\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DOKLADY NATSIONALNOI AKADEMII NAUK BELARUSI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29235/1561-8323-2022-66-5-501-508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Stabilization of the amorphous state of calcium carbonate-phosphates with phosphate ions
Amorphous calcium carbonate-phosphate with a Ca/P ratio of 1.83 was precipitated from Ca2+, Ca2+, PO3–4, CO2-3 − containing solutions at pH 10 and stabilized by ethanol dehydration and followed by heating at 400 °C. The presence of PO3–4 ions in the structure of amorphous calcium carbonate-phosphate provides its increased resistance to transformation into crystalline phases. Aging in a Ca2+, PO3–4 , CO2-3 − containing mother solution at pH 10 for 4 days promotes the transformation of amorphous calcium carbonate-phosphate into amorphous calcium carbonate-phosphate / carbonated hydroxyapatite / calcite. The combined effect of PO3–4 и CO2-3 − ions in the aquatic environment on the crystallization of amorphous calcium carbonate-phosphate into carbonated hydroxyapatite contributes to a maximum stabilization of the amorphous state that provides a high extent of bioactivity.