César Leroy, Laure Bonhomme-Coury, Christel Gervais, Frederik Tielens, Florence Babonneau, Michel Daudon, Dominique Bazin, Emmanuel Letavernier, Danielle Laurencin, Dinu Iuga, John V Hanna, Mark E Smith, Christian Bonhomme
{"title":"一种新的多核固体核磁共振方法用于肾结石的表征","authors":"César Leroy, Laure Bonhomme-Coury, Christel Gervais, Frederik Tielens, Florence Babonneau, Michel Daudon, Dominique Bazin, Emmanuel Letavernier, Danielle Laurencin, Dinu Iuga, John V Hanna, Mark E Smith, Christian Bonhomme","doi":"10.5194/mr-2-653-2021","DOIUrl":null,"url":null,"abstract":"<p><p>The spectroscopic study of pathological calcifications (including kidney stones) is extremely rich and helps to improve the understanding of the physical and chemical processes associated with their formation. While Fourier transform infrared (FTIR) imaging and optical/electron microscopies are routine techniques in hospitals, there has been a dearth of solid-state NMR studies introduced into this area of medical research, probably due to the scarcity of this analytical technique in hospital facilities. This work introduces effective multinuclear and multidimensional solid-state NMR methodologies to study the complex chemical and structural properties characterizing kidney stone composition. As a basis for comparison, three hydrates (<math><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow></math>, 2 and 3) of calcium oxalate are examined along with nine representative kidney stones. The multinuclear magic angle spinning (MAS) NMR approach adopted investigates the <math><mrow><msup><mi></mi><mn>1</mn></msup><mi>H</mi></mrow></math>, <math><mrow><msup><mi></mi><mn>13</mn></msup><mi>C</mi></mrow></math>, <math><mrow><msup><mi></mi><mn>31</mn></msup><mi>P</mi></mrow></math> and <math><mrow><msup><mi></mi><mn>31</mn></msup><mi>P</mi></mrow></math> nuclei, with the <math><mrow><msup><mi></mi><mn>1</mn></msup><mi>H</mi></mrow></math> and <math><mrow><msup><mi></mi><mn>13</mn></msup><mi>C</mi></mrow></math> MAS NMR data able to be readily deconvoluted into the constituent elements associated with the different oxalates and organics present. For the first time, the full interpretation of highly resolved <math><mrow><msup><mi></mi><mn>1</mn></msup><mi>H</mi></mrow></math> NMR spectra is presented for the three hydrates, based on the structure and local dynamics. The corresponding <math><mrow><msup><mi></mi><mn>31</mn></msup><mi>P</mi></mrow></math> MAS NMR data indicates the presence of low-level inorganic phosphate species; however, the complexity of these data make the precise identification of the phases difficult to assign. This work provides physicians, urologists and nephrologists with additional avenues of spectroscopic investigation to interrogate this complex medical dilemma that requires real, multitechnique approaches to generate effective outcomes.</p>","PeriodicalId":93333,"journal":{"name":"Magnetic resonance (Gottingen, Germany)","volume":" ","pages":"653-671"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10539836/pdf/","citationCount":"4","resultStr":"{\"title\":\"A novel multinuclear solid-state NMR approach for the characterization of kidney stones.\",\"authors\":\"César Leroy, Laure Bonhomme-Coury, Christel Gervais, Frederik Tielens, Florence Babonneau, Michel Daudon, Dominique Bazin, Emmanuel Letavernier, Danielle Laurencin, Dinu Iuga, John V Hanna, Mark E Smith, Christian Bonhomme\",\"doi\":\"10.5194/mr-2-653-2021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The spectroscopic study of pathological calcifications (including kidney stones) is extremely rich and helps to improve the understanding of the physical and chemical processes associated with their formation. While Fourier transform infrared (FTIR) imaging and optical/electron microscopies are routine techniques in hospitals, there has been a dearth of solid-state NMR studies introduced into this area of medical research, probably due to the scarcity of this analytical technique in hospital facilities. This work introduces effective multinuclear and multidimensional solid-state NMR methodologies to study the complex chemical and structural properties characterizing kidney stone composition. As a basis for comparison, three hydrates (<math><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow></math>, 2 and 3) of calcium oxalate are examined along with nine representative kidney stones. The multinuclear magic angle spinning (MAS) NMR approach adopted investigates the <math><mrow><msup><mi></mi><mn>1</mn></msup><mi>H</mi></mrow></math>, <math><mrow><msup><mi></mi><mn>13</mn></msup><mi>C</mi></mrow></math>, <math><mrow><msup><mi></mi><mn>31</mn></msup><mi>P</mi></mrow></math> and <math><mrow><msup><mi></mi><mn>31</mn></msup><mi>P</mi></mrow></math> nuclei, with the <math><mrow><msup><mi></mi><mn>1</mn></msup><mi>H</mi></mrow></math> and <math><mrow><msup><mi></mi><mn>13</mn></msup><mi>C</mi></mrow></math> MAS NMR data able to be readily deconvoluted into the constituent elements associated with the different oxalates and organics present. For the first time, the full interpretation of highly resolved <math><mrow><msup><mi></mi><mn>1</mn></msup><mi>H</mi></mrow></math> NMR spectra is presented for the three hydrates, based on the structure and local dynamics. The corresponding <math><mrow><msup><mi></mi><mn>31</mn></msup><mi>P</mi></mrow></math> MAS NMR data indicates the presence of low-level inorganic phosphate species; however, the complexity of these data make the precise identification of the phases difficult to assign. This work provides physicians, urologists and nephrologists with additional avenues of spectroscopic investigation to interrogate this complex medical dilemma that requires real, multitechnique approaches to generate effective outcomes.</p>\",\"PeriodicalId\":93333,\"journal\":{\"name\":\"Magnetic resonance (Gottingen, Germany)\",\"volume\":\" \",\"pages\":\"653-671\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10539836/pdf/\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magnetic resonance (Gottingen, Germany)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/mr-2-653-2021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic resonance (Gottingen, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/mr-2-653-2021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 4
摘要
摘要病理性钙化(包括肾结石)的光谱研究非常丰富,有助于提高对其形成相关的物理和化学过程的理解。虽然傅里叶变换红外(FTIR)成像和光学/电子显微镜是医院的常规技术,但固态核磁共振研究一直缺乏引入这一医学研究领域,可能是由于医院设施中缺乏这种分析技术。这项工作引入了有效的多核和多维固态核磁共振方法来研究肾结石组成的复杂化学和结构特性。作为比较的基础,我们检查了三种草酸钙水合物(n=1、2和3)以及九种具有代表性的肾结石。采用多核魔角旋转(MAS)核磁共振方法研究1H, 13C, 31P和31P核,1H和13C MAS核磁共振数据能够很容易地解卷积成与不同草酸盐和有机物相关的组成元素。首次提出了基于结构和局部动力学的三种水合物的高分辨率1H NMR光谱的完整解释。相应的31P MAS NMR数据表明存在低水平无机磷酸盐;然而,这些数据的复杂性使得阶段的精确识别难以分配。这项工作为医生、泌尿科医生和肾病科医生提供了额外的光谱研究途径,以询问这一复杂的医学困境,这需要真正的、多技术的方法来产生有效的结果。
A novel multinuclear solid-state NMR approach for the characterization of kidney stones.
The spectroscopic study of pathological calcifications (including kidney stones) is extremely rich and helps to improve the understanding of the physical and chemical processes associated with their formation. While Fourier transform infrared (FTIR) imaging and optical/electron microscopies are routine techniques in hospitals, there has been a dearth of solid-state NMR studies introduced into this area of medical research, probably due to the scarcity of this analytical technique in hospital facilities. This work introduces effective multinuclear and multidimensional solid-state NMR methodologies to study the complex chemical and structural properties characterizing kidney stone composition. As a basis for comparison, three hydrates (, 2 and 3) of calcium oxalate are examined along with nine representative kidney stones. The multinuclear magic angle spinning (MAS) NMR approach adopted investigates the , , and nuclei, with the and MAS NMR data able to be readily deconvoluted into the constituent elements associated with the different oxalates and organics present. For the first time, the full interpretation of highly resolved NMR spectra is presented for the three hydrates, based on the structure and local dynamics. The corresponding MAS NMR data indicates the presence of low-level inorganic phosphate species; however, the complexity of these data make the precise identification of the phases difficult to assign. This work provides physicians, urologists and nephrologists with additional avenues of spectroscopic investigation to interrogate this complex medical dilemma that requires real, multitechnique approaches to generate effective outcomes.