关于整个Dirichlet级数的正则变分

Q3 Mathematics
P. Filevych, O. B. Hrybel
{"title":"关于整个Dirichlet级数的正则变分","authors":"P. Filevych, O. B. Hrybel","doi":"10.30970/ms.58.2.174-181","DOIUrl":null,"url":null,"abstract":"Consider an entire (absolutely convergent in $\\mathbb{C}$) Dirichlet series $F$ with the exponents $\\lambda_n$, i.e., of the form $F(s)=\\sum_{n=0}^\\infty a_ne^{s\\lambda_n}$, and, for all $\\sigma\\in\\mathbb{R}$, put $\\mu(\\sigma,F)=\\max\\{|a_n|e^{\\sigma\\lambda_n}:n\\ge0\\}$ and $M(\\sigma,F)=\\sup\\{|F(s)|:\\operatorname{Re}s=\\sigma\\}$. Previously, the first of the authors and M.M.~Sheremeta proved that if $\\omega(\\lambda)<C(\\rho)$, then the regular variation of the function $\\ln\\mu(\\sigma,F)$ with index $\\rho$ implies the regular variation of the function $\\ln M(\\sigma,F)$ with index $\\rho$, and constructed examples of entire Dirichlet series $F$, for which $\\ln\\mu(\\sigma,F)$ is a regularly varying function with index $\\rho$, and $\\ln M(\\sigma,F)$ is not a regularly varying function with index $\\rho$. For the exponents of the constructed series we have $\\lambda_n=\\ln\\ln n$ for all $n\\ge n_0$ in the case $\\rho=1$, and $\\lambda_n\\sim(\\ln n)^{(\\rho-1)/\\rho}$ as $n\\to\\infty$ in the case $\\rho>1$. In the present article we prove that the exponents of entire Dirichlet series with the same property can form an arbitrary sequence $\\lambda=(\\lambda_n)_{n=0}^\\infty$ not satisfying $\\omega(\\lambda)<C(\\rho)$. More precisely, if $\\omega(\\lambda)\\ge C(\\rho)$, then there exists a regularly varying function $\\Phi(\\sigma)$ with index $\\rho$ such that, for an arbitrary positive function $l(\\sigma)$ on $[a,+\\infty)$, there exists an entire Dirichlet series $F$ with the exponents $\\lambda_n$, for which $\\ln \\mu(\\sigma, F)\\sim\\Phi(\\sigma)$ as $\\sigma\\to+\\infty$ and $M(\\sigma,F)\\ge l(\\sigma)$ for all $\\sigma\\ge\\sigma_0$.","PeriodicalId":37555,"journal":{"name":"Matematychni Studii","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On regular variation of entire Dirichlet series\",\"authors\":\"P. Filevych, O. B. Hrybel\",\"doi\":\"10.30970/ms.58.2.174-181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consider an entire (absolutely convergent in $\\\\mathbb{C}$) Dirichlet series $F$ with the exponents $\\\\lambda_n$, i.e., of the form $F(s)=\\\\sum_{n=0}^\\\\infty a_ne^{s\\\\lambda_n}$, and, for all $\\\\sigma\\\\in\\\\mathbb{R}$, put $\\\\mu(\\\\sigma,F)=\\\\max\\\\{|a_n|e^{\\\\sigma\\\\lambda_n}:n\\\\ge0\\\\}$ and $M(\\\\sigma,F)=\\\\sup\\\\{|F(s)|:\\\\operatorname{Re}s=\\\\sigma\\\\}$. Previously, the first of the authors and M.M.~Sheremeta proved that if $\\\\omega(\\\\lambda)<C(\\\\rho)$, then the regular variation of the function $\\\\ln\\\\mu(\\\\sigma,F)$ with index $\\\\rho$ implies the regular variation of the function $\\\\ln M(\\\\sigma,F)$ with index $\\\\rho$, and constructed examples of entire Dirichlet series $F$, for which $\\\\ln\\\\mu(\\\\sigma,F)$ is a regularly varying function with index $\\\\rho$, and $\\\\ln M(\\\\sigma,F)$ is not a regularly varying function with index $\\\\rho$. For the exponents of the constructed series we have $\\\\lambda_n=\\\\ln\\\\ln n$ for all $n\\\\ge n_0$ in the case $\\\\rho=1$, and $\\\\lambda_n\\\\sim(\\\\ln n)^{(\\\\rho-1)/\\\\rho}$ as $n\\\\to\\\\infty$ in the case $\\\\rho>1$. In the present article we prove that the exponents of entire Dirichlet series with the same property can form an arbitrary sequence $\\\\lambda=(\\\\lambda_n)_{n=0}^\\\\infty$ not satisfying $\\\\omega(\\\\lambda)<C(\\\\rho)$. More precisely, if $\\\\omega(\\\\lambda)\\\\ge C(\\\\rho)$, then there exists a regularly varying function $\\\\Phi(\\\\sigma)$ with index $\\\\rho$ such that, for an arbitrary positive function $l(\\\\sigma)$ on $[a,+\\\\infty)$, there exists an entire Dirichlet series $F$ with the exponents $\\\\lambda_n$, for which $\\\\ln \\\\mu(\\\\sigma, F)\\\\sim\\\\Phi(\\\\sigma)$ as $\\\\sigma\\\\to+\\\\infty$ and $M(\\\\sigma,F)\\\\ge l(\\\\sigma)$ for all $\\\\sigma\\\\ge\\\\sigma_0$.\",\"PeriodicalId\":37555,\"journal\":{\"name\":\"Matematychni Studii\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matematychni Studii\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30970/ms.58.2.174-181\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matematychni Studii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30970/ms.58.2.174-181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

考虑一个完整的(在$\mathbb{C}$中绝对收敛的)Dirichlet级数$F$,其指数为$\lambda_n$,即形式为$F(s)=\sum_{n=0}^\infty a_ne^{s\lambda_n}$,并且对于所有$\sigma\in\mathbb{R}$,放入$\mu(\sigma,F)=\max\{|a_n|e^{\sigma\lambda_n}:n\ge0\}$和$M(\sigma,F)=\sup\{|F(s)|:\operatorname{Re}s=\sigma\}$。此前,第一个作者和M.M. Sheremeta证明了$\omega(\lambda)1$。本文证明了具有相同性质的整个狄利克雷级数的指数可以形成一个任意序列$\lambda=(\lambda_n)_{n=0}^\infty$不满足$\omega(\lambda)本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文 本刊更多论文
On regular variation of entire Dirichlet series
Consider an entire (absolutely convergent in $\mathbb{C}$) Dirichlet series $F$ with the exponents $\lambda_n$, i.e., of the form $F(s)=\sum_{n=0}^\infty a_ne^{s\lambda_n}$, and, for all $\sigma\in\mathbb{R}$, put $\mu(\sigma,F)=\max\{|a_n|e^{\sigma\lambda_n}:n\ge0\}$ and $M(\sigma,F)=\sup\{|F(s)|:\operatorname{Re}s=\sigma\}$. Previously, the first of the authors and M.M.~Sheremeta proved that if $\omega(\lambda)1$. In the present article we prove that the exponents of entire Dirichlet series with the same property can form an arbitrary sequence $\lambda=(\lambda_n)_{n=0}^\infty$ not satisfying $\omega(\lambda)
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Matematychni Studii
Matematychni Studii Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
38
期刊介绍: Journal is devoted to research in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信