椭圆曲线Q类同根异扭图的一个分类

IF 1.1 Q1 MATHEMATICS
Garen Chiloyan, Álvaro Lozano-Robledo
{"title":"椭圆曲线Q类同根异扭图的一个分类","authors":"Garen Chiloyan, Álvaro Lozano-Robledo","doi":"10.1112/tlm3.12024","DOIUrl":null,"url":null,"abstract":"Let E be a Q ‐isogeny class of elliptic curves defined over Q . The isogeny graph associated to E is a graph which has a vertex for each elliptic curve in the Q ‐isogeny class E , and an edge for each cyclic Q ‐isogeny of prime degree between elliptic curves in the isogeny class, with the degree recorded as a label of the edge. In this paper, we define an isogeny‐torsion graph to be an isogeny graph where, in addition, we label each vertex with the abstract group structure of the torsion subgroup over Q of the corresponding elliptic curve. Then, the main result of the paper is a classification of all the possible isogeny‐torsion graphs that occur for Q ‐isogeny classes of elliptic curves defined over the rationals.","PeriodicalId":41208,"journal":{"name":"Transactions of the London Mathematical Society","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2020-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"A classification of isogeny‐torsion graphs of Q ‐isogeny classes of elliptic curves\",\"authors\":\"Garen Chiloyan, Álvaro Lozano-Robledo\",\"doi\":\"10.1112/tlm3.12024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let E be a Q ‐isogeny class of elliptic curves defined over Q . The isogeny graph associated to E is a graph which has a vertex for each elliptic curve in the Q ‐isogeny class E , and an edge for each cyclic Q ‐isogeny of prime degree between elliptic curves in the isogeny class, with the degree recorded as a label of the edge. In this paper, we define an isogeny‐torsion graph to be an isogeny graph where, in addition, we label each vertex with the abstract group structure of the torsion subgroup over Q of the corresponding elliptic curve. Then, the main result of the paper is a classification of all the possible isogeny‐torsion graphs that occur for Q ‐isogeny classes of elliptic curves defined over the rationals.\",\"PeriodicalId\":41208,\"journal\":{\"name\":\"Transactions of the London Mathematical Society\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2020-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the London Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1112/tlm3.12024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the London Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1112/tlm3.12024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 17

摘要

设E是在Q上定义的椭圆曲线的Q同构类。与E相关的同构图是一个图,它对Q‐同构类E中的每个椭圆曲线都有一个顶点,对同构类中椭圆曲线之间素数阶的每个循环Q‐同构都有一条边,该阶被记录为边的标签。在本文中,我们将同胚-扭转图定义为同胚图,此外,我们用相应椭圆曲线Q上的扭转子群的抽象群结构标记每个顶点。然后,本文的主要结果是对在有理数上定义的椭圆曲线的Q‐isogeny类中出现的所有可能的同胚扭转图进行了分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A classification of isogeny‐torsion graphs of Q ‐isogeny classes of elliptic curves
Let E be a Q ‐isogeny class of elliptic curves defined over Q . The isogeny graph associated to E is a graph which has a vertex for each elliptic curve in the Q ‐isogeny class E , and an edge for each cyclic Q ‐isogeny of prime degree between elliptic curves in the isogeny class, with the degree recorded as a label of the edge. In this paper, we define an isogeny‐torsion graph to be an isogeny graph where, in addition, we label each vertex with the abstract group structure of the torsion subgroup over Q of the corresponding elliptic curve. Then, the main result of the paper is a classification of all the possible isogeny‐torsion graphs that occur for Q ‐isogeny classes of elliptic curves defined over the rationals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
8
审稿时长
41 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信