中某些奇异测度的傅立叶变换的衰变估计ℝ4及其应用

IF 0.6 3区 数学 Q3 MATHEMATICS
T. Godoy, P. Rocha
{"title":"中某些奇异测度的傅立叶变换的衰变估计ℝ4及其应用","authors":"T. Godoy,&nbsp;P. Rocha","doi":"10.1007/s10476-023-0208-4","DOIUrl":null,"url":null,"abstract":"<div><p>We consider, for a class of functions <i>φ</i>: ℝ<sup>2</sup> {<b>0</b>} → ℝ<sup>2</sup> satisfying a nonisotropic homogeneity condition, the Fourier transform <i>û</i> of the Borel measure on ℝ<sup>4</sup> defined by </p><div><div><span>$$\\mu \\left(E \\right) = \\int_U {{\\chi E}\\left({x,\\varphi \\left(x \\right)} \\right)} \\,dx$$</span></div></div><p> where <i>E</i> is a Borel set of ℝ<sup>4</sup> and <span>\\(U = \\left\\{{\\left({{t^{{\\alpha _1}}},{t^{{\\alpha _2}}}s} \\right):c &lt; s &lt; d,\\,\\,0 &lt; t &lt; 1} \\right\\}\\)</span>. The aim of this article is to give a decay estimate for <i>û</i> for the case where the set of nonelliptic points of <i>φ</i> is a curve in <span>\\(\\overline U \\backslash \\left\\{{\\bf{0}} \\right\\}\\)</span>. From this estimate we obtain a restriction theorem for the usual Fourier transform to the graph of <i>φ</i>∣<sub><i>U</i></sub>: <i>U</i> → ℝ<sup>2</sup>. We also give <i>L</i><sup><i>p</i></sup>-improving properties for the convolution operator <i>T</i><sub><i>μ</i></sub><i>f</i> = <i>μ</i> * <i>f</i>.</p></div>","PeriodicalId":55518,"journal":{"name":"Analysis Mathematica","volume":"49 2","pages":"443 - 466"},"PeriodicalIF":0.6000,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10476-023-0208-4.pdf","citationCount":"0","resultStr":"{\"title\":\"A decay estimate for the Fourier transform of certain singular measures in ℝ4 and applications\",\"authors\":\"T. Godoy,&nbsp;P. Rocha\",\"doi\":\"10.1007/s10476-023-0208-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider, for a class of functions <i>φ</i>: ℝ<sup>2</sup> {<b>0</b>} → ℝ<sup>2</sup> satisfying a nonisotropic homogeneity condition, the Fourier transform <i>û</i> of the Borel measure on ℝ<sup>4</sup> defined by </p><div><div><span>$$\\\\mu \\\\left(E \\\\right) = \\\\int_U {{\\\\chi E}\\\\left({x,\\\\varphi \\\\left(x \\\\right)} \\\\right)} \\\\,dx$$</span></div></div><p> where <i>E</i> is a Borel set of ℝ<sup>4</sup> and <span>\\\\(U = \\\\left\\\\{{\\\\left({{t^{{\\\\alpha _1}}},{t^{{\\\\alpha _2}}}s} \\\\right):c &lt; s &lt; d,\\\\,\\\\,0 &lt; t &lt; 1} \\\\right\\\\}\\\\)</span>. The aim of this article is to give a decay estimate for <i>û</i> for the case where the set of nonelliptic points of <i>φ</i> is a curve in <span>\\\\(\\\\overline U \\\\backslash \\\\left\\\\{{\\\\bf{0}} \\\\right\\\\}\\\\)</span>. From this estimate we obtain a restriction theorem for the usual Fourier transform to the graph of <i>φ</i>∣<sub><i>U</i></sub>: <i>U</i> → ℝ<sup>2</sup>. We also give <i>L</i><sup><i>p</i></sup>-improving properties for the convolution operator <i>T</i><sub><i>μ</i></sub><i>f</i> = <i>μ</i> * <i>f</i>.</p></div>\",\"PeriodicalId\":55518,\"journal\":{\"name\":\"Analysis Mathematica\",\"volume\":\"49 2\",\"pages\":\"443 - 466\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10476-023-0208-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10476-023-0208-4\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis Mathematica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10476-023-0208-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑,对于一类函数φ:ℝ2{0}→ ℝ2满足非各向同性齐性条件,上的Borel测度的傅立叶变换ℝ4由$$\mu\left(E\right)=\int_U{\chi E}\left({x,\varphi\left(x\right))}\,dx$$定义,其中E是ℝ4和\;s<;d、 \,\,0<;t<;1} \right\}\)。本文的目的是在φ的非椭圆点集是\(\overline U\rassh\left\{\bf{0}}\right\}\)中的曲线的情况下,给出û的衰变估计。根据这一估计,我们得到了对φÜU:U图的一般傅立叶变换的一个限制定理→ ℝ2.还给出了卷积算子Tμf=μ*f的Lp改进性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A decay estimate for the Fourier transform of certain singular measures in ℝ4 and applications

We consider, for a class of functions φ: ℝ2 {0} → ℝ2 satisfying a nonisotropic homogeneity condition, the Fourier transform û of the Borel measure on ℝ4 defined by

$$\mu \left(E \right) = \int_U {{\chi E}\left({x,\varphi \left(x \right)} \right)} \,dx$$

where E is a Borel set of ℝ4 and \(U = \left\{{\left({{t^{{\alpha _1}}},{t^{{\alpha _2}}}s} \right):c < s < d,\,\,0 < t < 1} \right\}\). The aim of this article is to give a decay estimate for û for the case where the set of nonelliptic points of φ is a curve in \(\overline U \backslash \left\{{\bf{0}} \right\}\). From this estimate we obtain a restriction theorem for the usual Fourier transform to the graph of φU: U → ℝ2. We also give Lp-improving properties for the convolution operator Tμf = μ * f.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analysis Mathematica
Analysis Mathematica MATHEMATICS-
CiteScore
1.00
自引率
14.30%
发文量
54
审稿时长
>12 weeks
期刊介绍: Traditionally the emphasis of Analysis Mathematica is classical analysis, including real functions (MSC 2010: 26xx), measure and integration (28xx), functions of a complex variable (30xx), special functions (33xx), sequences, series, summability (40xx), approximations and expansions (41xx). The scope also includes potential theory (31xx), several complex variables and analytic spaces (32xx), harmonic analysis on Euclidean spaces (42xx), abstract harmonic analysis (43xx). The journal willingly considers papers in difference and functional equations (39xx), functional analysis (46xx), operator theory (47xx), analysis on topological groups and metric spaces, matrix analysis, discrete versions of topics in analysis, convex and geometric analysis and the interplay between geometry and analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信