基于系统思维和统计分析的过程工业事故原因显著性排序与关联识别

IF 1 4区 工程技术 Q4 ENGINEERING, CHEMICAL
Wei Zhang, Huayu Zhong, Yudong Shi, Tingsheng Zhao
{"title":"基于系统思维和统计分析的过程工业事故原因显著性排序与关联识别","authors":"Wei Zhang, Huayu Zhong, Yudong Shi, Tingsheng Zhao","doi":"10.1002/prs.12522","DOIUrl":null,"url":null,"abstract":"Accidents in process industry occur frequently with serious casualties and property losses. This paper builds an accident causation model of process industry based on system thinking by dividing the accident causation system into 4 subsystems and 22 factors. A combination of grey relational analysis and correspondence analysis is conducted to carry out a structured analysis of the collected data. The research contains three main parts: (1) Grey relational analysis is used to obtain the significance ranking of 22 cause factors in process industry, and three critical cause factors are identified as “Security inspection,” “Risk identification,” and “Security awareness.” (2) Through correspondence analysis, the correlations between three sets of variables are analyzed and the cause factors requiring focused attention are identified as “Electric spark,” “Temperature,” “Raw material control,” “Punching phenomenon,” “Equipment clogging,” and “Combustible gases.” (3) An intelligent monitoring scheme is developed for the critical factors of each subsystem, which aims to achieve real‐time monitoring and early warning by means of video surveillance and sensor placement for the human, equipment, and environment subsystems. The conclusions obtained from this study can be used to enhance the efficiency of safety management and reduce the probability of accident occurrence in the process industry.","PeriodicalId":20680,"journal":{"name":"Process Safety Progress","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Significance ranking and correlation identification of accident causes in process industry based on system thinking and statistical analysis\",\"authors\":\"Wei Zhang, Huayu Zhong, Yudong Shi, Tingsheng Zhao\",\"doi\":\"10.1002/prs.12522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accidents in process industry occur frequently with serious casualties and property losses. This paper builds an accident causation model of process industry based on system thinking by dividing the accident causation system into 4 subsystems and 22 factors. A combination of grey relational analysis and correspondence analysis is conducted to carry out a structured analysis of the collected data. The research contains three main parts: (1) Grey relational analysis is used to obtain the significance ranking of 22 cause factors in process industry, and three critical cause factors are identified as “Security inspection,” “Risk identification,” and “Security awareness.” (2) Through correspondence analysis, the correlations between three sets of variables are analyzed and the cause factors requiring focused attention are identified as “Electric spark,” “Temperature,” “Raw material control,” “Punching phenomenon,” “Equipment clogging,” and “Combustible gases.” (3) An intelligent monitoring scheme is developed for the critical factors of each subsystem, which aims to achieve real‐time monitoring and early warning by means of video surveillance and sensor placement for the human, equipment, and environment subsystems. The conclusions obtained from this study can be used to enhance the efficiency of safety management and reduce the probability of accident occurrence in the process industry.\",\"PeriodicalId\":20680,\"journal\":{\"name\":\"Process Safety Progress\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Process Safety Progress\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/prs.12522\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Process Safety Progress","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/prs.12522","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

过程工业事故频发,造成严重的人员伤亡和财产损失。本文基于系统思维,将过程工业事故成因系统划分为4个子系统和22个因素,构建了过程工业事故成因模型。将灰色关联分析与对应分析相结合,对收集到的数据进行结构化分析。研究内容主要包括三个部分:(1)运用灰色关联分析法,对过程工业中22个原因进行重要性排序,确定了“安全检查”、“风险识别”和“安全意识”三个关键原因。(2)通过对应分析,分析了三组变量之间的相关性,确定了需要重点关注的原因为“电火花”、“温度”、“原料控制”、“冲压现象”、“设备堵塞”和“可燃气体”。(3)针对每个子系统的关键因素制定了智能监控方案,旨在通过对人、设备和环境子系统的视频监控和传感器放置实现实时监控和预警。本研究的结论可用于提高流程工业安全管理的效率,降低事故发生的概率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Significance ranking and correlation identification of accident causes in process industry based on system thinking and statistical analysis
Accidents in process industry occur frequently with serious casualties and property losses. This paper builds an accident causation model of process industry based on system thinking by dividing the accident causation system into 4 subsystems and 22 factors. A combination of grey relational analysis and correspondence analysis is conducted to carry out a structured analysis of the collected data. The research contains three main parts: (1) Grey relational analysis is used to obtain the significance ranking of 22 cause factors in process industry, and three critical cause factors are identified as “Security inspection,” “Risk identification,” and “Security awareness.” (2) Through correspondence analysis, the correlations between three sets of variables are analyzed and the cause factors requiring focused attention are identified as “Electric spark,” “Temperature,” “Raw material control,” “Punching phenomenon,” “Equipment clogging,” and “Combustible gases.” (3) An intelligent monitoring scheme is developed for the critical factors of each subsystem, which aims to achieve real‐time monitoring and early warning by means of video surveillance and sensor placement for the human, equipment, and environment subsystems. The conclusions obtained from this study can be used to enhance the efficiency of safety management and reduce the probability of accident occurrence in the process industry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Process Safety Progress
Process Safety Progress 工程技术-工程:化工
CiteScore
2.20
自引率
10.00%
发文量
99
审稿时长
6-12 weeks
期刊介绍: Process Safety Progress covers process safety for engineering professionals. It addresses such topics as incident investigations/case histories, hazardous chemicals management, hazardous leaks prevention, risk assessment, process hazards evaluation, industrial hygiene, fire and explosion analysis, preventive maintenance, vapor cloud dispersion, and regulatory compliance, training, education, and other areas in process safety and loss prevention, including emerging concerns like plant and/or process security. Papers from the annual Loss Prevention Symposium and other AIChE safety conferences are automatically considered for publication, but unsolicited papers, particularly those addressing process safety issues in emerging technologies and industries are encouraged and evaluated equally.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信