Marco Speth, Kim Rouven Riedmueller, Mathias Liewald
{"title":"SiC体积分数高达50%的高铝陶瓷粉混合行为研究","authors":"Marco Speth, Kim Rouven Riedmueller, Mathias Liewald","doi":"10.1186/s42252-023-00045-z","DOIUrl":null,"url":null,"abstract":"<div><p>Aluminium matrix composites (AMC) do combine a high lightweight potential with a wide range of specific mechanical or thermal properties, depending on their material composition or the content of reinforcement particles, respectively. Currently, the three main production technologies for manufacturing such AMC are powder metallurgy, semi-solid processes and casting. Here, the AMC´s reinforcement proportion that can be processed depends on the chosen manufacturing strategy and is therefore often limited to a maximum value of 30 vol. %, due to agglomeration and porosity problems. In this context, the main objective is to understand the fundamental mixing behaviour of powder mixtures for AMC green body production having reinforcement contents of up to 50 vol.% SiC<sub>p</sub>. For this purpose, powder mixtures of monomodal AlSi7Mg0.6 and different SiC<sub>p</sub> fractions were prepared with different mixing times and speeds to investigate the influence of these mixing parameters on the homogeneity of the particle distribution. Afterwards, the influence of powder size on the mixing process was investigated. The results showed that a slower mixing speed resulted in faster homogenisation as well as a larger particle size can be faster mixed. Furthermore, a regression model was developed using mixing time, speed and particle loading, to determine sufficient mixing parameters.\n</p></div>","PeriodicalId":576,"journal":{"name":"Functional Composite Materials","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://functionalcompositematerials.springeropen.com/counter/pdf/10.1186/s42252-023-00045-z","citationCount":"0","resultStr":"{\"title\":\"Study on mixing behaviour of aluminium-ceramic powder having high SiC volume fractions up to 50 vol.%\",\"authors\":\"Marco Speth, Kim Rouven Riedmueller, Mathias Liewald\",\"doi\":\"10.1186/s42252-023-00045-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Aluminium matrix composites (AMC) do combine a high lightweight potential with a wide range of specific mechanical or thermal properties, depending on their material composition or the content of reinforcement particles, respectively. Currently, the three main production technologies for manufacturing such AMC are powder metallurgy, semi-solid processes and casting. Here, the AMC´s reinforcement proportion that can be processed depends on the chosen manufacturing strategy and is therefore often limited to a maximum value of 30 vol. %, due to agglomeration and porosity problems. In this context, the main objective is to understand the fundamental mixing behaviour of powder mixtures for AMC green body production having reinforcement contents of up to 50 vol.% SiC<sub>p</sub>. For this purpose, powder mixtures of monomodal AlSi7Mg0.6 and different SiC<sub>p</sub> fractions were prepared with different mixing times and speeds to investigate the influence of these mixing parameters on the homogeneity of the particle distribution. Afterwards, the influence of powder size on the mixing process was investigated. The results showed that a slower mixing speed resulted in faster homogenisation as well as a larger particle size can be faster mixed. Furthermore, a regression model was developed using mixing time, speed and particle loading, to determine sufficient mixing parameters.\\n</p></div>\",\"PeriodicalId\":576,\"journal\":{\"name\":\"Functional Composite Materials\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://functionalcompositematerials.springeropen.com/counter/pdf/10.1186/s42252-023-00045-z\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Functional Composite Materials\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s42252-023-00045-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Composite Materials","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1186/s42252-023-00045-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Study on mixing behaviour of aluminium-ceramic powder having high SiC volume fractions up to 50 vol.%
Aluminium matrix composites (AMC) do combine a high lightweight potential with a wide range of specific mechanical or thermal properties, depending on their material composition or the content of reinforcement particles, respectively. Currently, the three main production technologies for manufacturing such AMC are powder metallurgy, semi-solid processes and casting. Here, the AMC´s reinforcement proportion that can be processed depends on the chosen manufacturing strategy and is therefore often limited to a maximum value of 30 vol. %, due to agglomeration and porosity problems. In this context, the main objective is to understand the fundamental mixing behaviour of powder mixtures for AMC green body production having reinforcement contents of up to 50 vol.% SiCp. For this purpose, powder mixtures of monomodal AlSi7Mg0.6 and different SiCp fractions were prepared with different mixing times and speeds to investigate the influence of these mixing parameters on the homogeneity of the particle distribution. Afterwards, the influence of powder size on the mixing process was investigated. The results showed that a slower mixing speed resulted in faster homogenisation as well as a larger particle size can be faster mixed. Furthermore, a regression model was developed using mixing time, speed and particle loading, to determine sufficient mixing parameters.