允许仿射共形向量场的半Riemanman流形中的类光超曲面

IF 1 Q1 MATHEMATICS
S. Ssekajja
{"title":"允许仿射共形向量场的半Riemanman流形中的类光超曲面","authors":"S. Ssekajja","doi":"10.46793/kgjmat2302.297s","DOIUrl":null,"url":null,"abstract":"Lightlike hypersurfaces with integrable screen distributions are very important as far as lightlike geometry is concerned. They include, among others, screen conformal and screen totally umbilic ones. In this paper, we show that any lightlike hypersurface of a semi-Riemannian manifold admitting a certain closed affine conformal vector field has an integrable screen distribution. Several examples are furnished in support of the main results.","PeriodicalId":44902,"journal":{"name":"Kragujevac Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lightlike Hypersurfaces in Semi-Riemmanian Manifolds Admitting Affine Conformal Vector Fields\",\"authors\":\"S. Ssekajja\",\"doi\":\"10.46793/kgjmat2302.297s\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lightlike hypersurfaces with integrable screen distributions are very important as far as lightlike geometry is concerned. They include, among others, screen conformal and screen totally umbilic ones. In this paper, we show that any lightlike hypersurface of a semi-Riemannian manifold admitting a certain closed affine conformal vector field has an integrable screen distribution. Several examples are furnished in support of the main results.\",\"PeriodicalId\":44902,\"journal\":{\"name\":\"Kragujevac Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kragujevac Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46793/kgjmat2302.297s\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kragujevac Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46793/kgjmat2302.297s","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于类光几何而言,具有可积屏分布的类光超曲面是非常重要的。其中包括屏幕保形和屏幕全脐。在本文中,我们证明了半黎曼流形的任何类光超曲面都具有可积的屏蔽分布。提供了几个例子来支持主要结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lightlike Hypersurfaces in Semi-Riemmanian Manifolds Admitting Affine Conformal Vector Fields
Lightlike hypersurfaces with integrable screen distributions are very important as far as lightlike geometry is concerned. They include, among others, screen conformal and screen totally umbilic ones. In this paper, we show that any lightlike hypersurface of a semi-Riemannian manifold admitting a certain closed affine conformal vector field has an integrable screen distribution. Several examples are furnished in support of the main results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
0.00%
发文量
50
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信