测量过程产生的认知不确定性——以多相激波管实验为例

IF 0.5 Q4 ENGINEERING, MECHANICAL
Chanyoung Park, J. Matthew, N. Kim, R. Haftka
{"title":"测量过程产生的认知不确定性——以多相激波管实验为例","authors":"Chanyoung Park, J. Matthew, N. Kim, R. Haftka","doi":"10.1115/1.4042814","DOIUrl":null,"url":null,"abstract":"Experiments of a shock hitting a curtain of particles were conducted at the multiphase shock tube facility at Sandia National Laboratories. These are studied in this paper for quantifying the epistemic uncertainty in the experimental measurements due to processing via measurement models. Schlieren and X-ray imaging techniques were used to obtain the measurements that characterize the particle curtain with particle volume fraction and curtain edge locations. The epistemic uncertainties in the experimental setup and image processing methods were identified and measured. The effects of these uncertainties on the uncertainty in the extracted experimental measurements were quantified. The influence of the epistemic uncertainty was significantly higher than the experimental variability that has been previously considered as the most important uncertainty of experiments.","PeriodicalId":52254,"journal":{"name":"Journal of Verification, Validation and Uncertainty Quantification","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1115/1.4042814","citationCount":"5","resultStr":"{\"title\":\"Epistemic Uncertainty Stemming From Measurement Processing—A Case Study of Multiphase Shock Tube Experiments\",\"authors\":\"Chanyoung Park, J. Matthew, N. Kim, R. Haftka\",\"doi\":\"10.1115/1.4042814\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Experiments of a shock hitting a curtain of particles were conducted at the multiphase shock tube facility at Sandia National Laboratories. These are studied in this paper for quantifying the epistemic uncertainty in the experimental measurements due to processing via measurement models. Schlieren and X-ray imaging techniques were used to obtain the measurements that characterize the particle curtain with particle volume fraction and curtain edge locations. The epistemic uncertainties in the experimental setup and image processing methods were identified and measured. The effects of these uncertainties on the uncertainty in the extracted experimental measurements were quantified. The influence of the epistemic uncertainty was significantly higher than the experimental variability that has been previously considered as the most important uncertainty of experiments.\",\"PeriodicalId\":52254,\"journal\":{\"name\":\"Journal of Verification, Validation and Uncertainty Quantification\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1115/1.4042814\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Verification, Validation and Uncertainty Quantification\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4042814\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Verification, Validation and Uncertainty Quantification","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4042814","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 5

摘要

在桑迪亚国家实验室的多相激波管设备上进行了激波撞击粒子幕的实验。本文对实验测量中由于测量模型处理而产生的认知不确定性进行了量化研究。采用纹影和x射线成像技术获得了粒子幕的测量结果,包括粒子体积分数和幕边缘位置。识别和测量了实验设置和图像处理方法中的认知不确定性。这些不确定度对提取的实验测量不确定度的影响进行了量化。认知不确定性的影响明显高于实验变异性,而实验变异性被认为是实验中最重要的不确定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Epistemic Uncertainty Stemming From Measurement Processing—A Case Study of Multiphase Shock Tube Experiments
Experiments of a shock hitting a curtain of particles were conducted at the multiphase shock tube facility at Sandia National Laboratories. These are studied in this paper for quantifying the epistemic uncertainty in the experimental measurements due to processing via measurement models. Schlieren and X-ray imaging techniques were used to obtain the measurements that characterize the particle curtain with particle volume fraction and curtain edge locations. The epistemic uncertainties in the experimental setup and image processing methods were identified and measured. The effects of these uncertainties on the uncertainty in the extracted experimental measurements were quantified. The influence of the epistemic uncertainty was significantly higher than the experimental variability that has been previously considered as the most important uncertainty of experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
16.70%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信